离散数学是计算机学科的专业基础课程,它对学生计算机科学理论水平的提高起着非常重要的作用。但是,在该课程的学习过程中,学生对离散数学的重要性以及与其它课程的联系似乎是雾里看花,模糊不清。当然,这是很自然的事情,因为处在现有的知识结构中,学生不可能对所学的知识具有全面和深刻的认识,就象古诗中描述的那样:“不识庐山真面目,只缘身在此山中”。处在一个环境中难以看清该环境中的一切事物是很正常的。所以,在学习离散数学的过程中,学生不必过分关注它的用处以及它在计算机学科中所起的作用,而应从以下几个方面入手,力争学好本课程的全部内容:
1、从严格的数学定义出发建立概念
离散数学的每一个概念都是由定义给出的,分析定义,弄清定义所给出的概念是非常重要的,是初学者的首要任务。离散数学中的定义往往从严格的数学角度出发进行描述,是某种概念的高度抽象。它与高等数学中的某些带有直观性的定义相比更具严格化。因此,一定要站在严格的数学角度上去理解离散数学的定义,建立严格的数学概念。
2、重视数学性质和证明过程
数学概念的讨论一般建立在这些概念所具有的性质之上,性质的研究是对数学概念讨论的'进一步深入,往往通过命题、定理、推论等形式研究抽象概念的特性。充分理解数学概念性质的方法是完全弄懂该性质的证明过程,这不仅是学习数学知识的过程,也是增强抽象思维能力,培养逻辑严密程度的重要途径。数学定理的证明是一项困难和枯燥的工作,初学者往往因畏惧其难度而放过许多证明的细节,这是非常不可取的。因为读懂证明过程的每一步不仅是掌握知识的重要环节,而且还是培养各种能力的有效途径。证明技巧的训练,可以促进推理技能的提高、逻辑抽象的深入、思维方式的严谨和理解能力的增强。当然,这需要一个长期训练的过程,不可能立杆见影,希望通过个别定理的证明而达到提高各种能力的想法是不现实的。所以,重视每一个性质以及它的证明过程是非常重要的。
因篇幅问题不能全部显示,请点此查看更多更全内容