北师大版七年级下册数学
重难点突破
知识点梳理及重点题型巩固练习
三角形及其性质(提高)知识讲解
【学习目标】
1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法. 2. 理解三角形内角和定理的证明方法; 3. 掌握并会把三角形按边和角分类
4. 掌握并会应用三角形三边之间的关系.
5. 理解三角形的高、中线、角平分线的概念,学会它们的画法. 6. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.
【要点梳理】
要点一、三角形的定义
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
要点诠释:
(1)三角形的基本元素:
①三角形的边:即组成三角形的线段;
②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.
要点二、三角形的内角和
三角形内角和定理:三角形的内角和为180°.
要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点三、三角形的分类 1.按角分类:
资料来源于网络 仅供免费交流使用
精品文档 用心整理
直角三角形三角形 锐角三角形 斜三角形 钝角三角形要点诠释:
①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 2.按边分类:
不等边三角形三角形 底边和腰不相等的等腰三角形 等腰三角形 等边三角形要点诠释:
①不等边三角形:三边都不相等的三角形;
②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形. 要点四、三角形的三边关系
定理:三角形任意两边之和大于第三边. 推论:三角形任意两边之差小于第三边. 要点诠释:
(1)理论依据:两点之间线段最短.
(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.
要点五、三角形的三条重要线段
三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下: 线段名称 文字语言 三角形的高 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 三角形的中线 三角形中,连接一个顶点和它对边中点的线段. 三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段. 图形语言 作图语言 过点A作AD⊥BC于点D. 取BC边的中点D,连接AD. 作∠BAC的平分线AD,交BC于点D. 资料来源于网络 仅供免费交流使用
精品文档 用心整理
标示图形 1.AD是△ABC的高. 2.AD是△ABC中BC边上的高. 3.AD⊥BC于点D. 4.∠ADC=90°,∠ADB=90°. (或∠ADC=∠ADB=90°) 因为AD是△ABC的高,所以AD⊥BC. (或∠ADB=∠ADC=90°) 1.线段垂直. 2.角度相等. 1.与边的垂线不同. 2.不一定在三角形内. 三角形的三条高(或它们的延长线)交于一点. 1.AD是△ABC的中线. 2.AD是△ABC中BC1.AD是△ABC的角平分边上的中线. 线. 12.AD平分∠BAC,交BC3.BD=DC=BC 于点D. 214.点D是BC边的中点. 3.∠1=∠2=∠BAC. 符号语言 2推理语言 用途举例 注意事项 重要特征 因为AD是△ABC的中线,所以BD=DC=因为AD平分∠BAC,所以∠1=∠2=1BC. 21.线段相等. 2.面积相等. — 一个三角形有三条中线,它们交于三角形内一点. 1∠BAC. 2角度相等. 与角的平分线不同. 一个三角形有三条角平分线,它们交于三角形内一点. 要点六、三角形的稳定性
三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。 要点诠释:
(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变. (2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.
(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.
【典型例题】
类型一、三角形的内角和
1.在△ABC中,若∠A=【思路点拨】由∠A=
11∠B=∠C,试判断该三角形的形状.
3211∠B=∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和
32∠C的度数,从而判断三角形的形状.
【答案与解析】
资料来源于网络 仅供免费交流使用
精品文档 用心整理
解:设∠A=x,则∠B=2x,∠C=3x.
由于∠A+∠B+∠C=180°,即有x+2x+3x=180°. 解得x=30°.故∠A=30°.∠B=60°,∠C=90°. 故△ABC是直角三角形.
【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙. 举一反三: 【变式1】(2015春•泰兴市期末)如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.
【答案】
解:∵∠A=45°,∠BDC=60°, ∴∠ABD=∠BDC﹣∠A=15°. ∵BD是∠ABC的角平分线, ∴∠DBC=∠EBD=15°, ∵DE∥BC,
∴∠BDE=∠DBC=15°;
∴∠BED=180°﹣∠EBD﹣∠EDB=150°.
【变式2】如图,AC⊥BC,CD⊥AB,图中有 对互余的角?有 对相等的锐角?
【答案】3,2.
2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?
【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论. 【答案与解析】
解:分两种情况讨论:
(1)当△ABC为锐角三角形时,如图所示,在△ABD中,
∵ BD是AC边上的高(已知),
资料来源于网络 仅供免费交流使用
精品文档 用心整理
∴ ∠ADB=90°(垂直定义). 又∵ ∠ABD=30°(已知),
∴ ∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°. 又∵ ∠A+∠ABC+∠C=180°(三角形内角和定理), ∴ ∠ABC+∠C=120°,
又∵ ∠ABC=∠C,∴ ∠C=60°.
(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,
∵ ∠ABD=30°(已知),所以∠BAD=60°. ∴ ∠BAC=120°.
又∵ ∠BAC+∠ABC+∠C=180°(三角形内角和定理), ∴ ∠ABC+∠C=60°.
∴ ∠C=30°.
综上,∠C的度数为60°或30°.
【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节. 类型二、三角形的分类
3.一个三角形一个内角的度数是108°,这个三角形是( )三角形;一个三角形三条边的长度分别是7cm,8cm,7cm,这个三角形是( )三角形. 【答案】钝角;等腰 举一反三:
【变式】一个等腰三角形的边长为5cm和4cm,围成这个等腰三角形至少需要( )cm长的绳子,最多需要( )cm长绳子(接头忽略不计).
【思路点拨】对于所给边长要分类讨论:当4cm为腰长时,需要绳子的长度最短;当5cm为腰长时,需要绳子的长度最长. 【答案】13;14
类型三、三角形的三边关系
4. (2015春•太康县期末)在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC的周长. 【答案与解析】
解:根据三角形的三边关系得: 9﹣2<BC<9+2, 即7<BC<11, ∵BC为偶数, ∴AC=8或10,
∴△ABC的周长为:9+2+8=19或9+2+10=21.
资料来源于网络 仅供免费交流使用
精品文档 用心整理
【总结升华】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系,还要注意第三边是偶数这一条件.
举一反三:
【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x为 时,所组成的三角形周长最大.
【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2 (1)你能说明OB+OC<AB+AC的理由吗? (2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗? 【答案与解析】 解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到, 在△ABE中,AB+AE>BE; 在△EOC中,OE+EC>OC, 两不等式相加,得AB+AE+OE+EC>BE+OC. 由图可知,AE+EC=AC,BE=OB+OE. 所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC. (2)因为OB+OC>BC,所以OB+OC>7. 又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11. 【总结升华】充分利用三角形三边关系的性质进行解题. 举一反三: 【变式】若五条线段的长分别是1cm、2cm、3cm、4cm、5cm,则以其中三条线段为边可构成______个三角形. 【答案】3. 类型四、三角形中的重要线段 6.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长. 【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论. 【答案与解析】 资料来源于网络 仅供免费交流使用 精品文档 用心整理 解:如图(1),设AB=x,AD=CD= (1)若AB+AD=12,即x1x. 21x12,所以x=8, 2 即AB=AC=8,则CD=4.故BC=15-4=11. 此时AB+AC>BC,所以三边长为8,8,11. (2)如图(2),若AB+AD=15,即x1x15,所2以x=10. 即AB=AC=10,则CD=5.故BC=12-5=7. 显然此时三角形存在,所以三边长为10,10,7. 综上所述此三角形的三边长分别为8,8,11或10,10,7. 【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论. 举一反三: 【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择. 【答案】 解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF. 方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF. 方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE. 方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF. 类型五、三角形的稳定性 7. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且使用,你知道它能收缩的原因和固定方法吗? 资料来源于网络 仅供免费交流使用 精品文档 用心整理 【答案与解析】 解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。它的固定方法是:任选两个不在同一木条上的顶点固定就行了。 【总结升华】要使物体具有稳定性,应做成三角形,否则做成四边形、五边形等等. 举一反三: 【变式】如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?使七边形木架不变形,至少要钉几根木条?使n边形木架不变形.又至少要钉多少根木条? 【答案】要使五边形木架不变形,至少要钉2根木条;使七边形木架不变形,至少要钉4根木条;使n边形木架不变形,至少要钉(n-3)根木条. 资料来源于网络 仅供免费交流使用 因篇幅问题不能全部显示,请点此查看更多更全内容