-BoundedRationalityandInduction
UweDulleck¤yCommentswelcome
Abstract
InRubinstein´s(19)E-mailgamethereexistsnoNashequilib-riumwhereplayersusestrategiesthatconditionontheE-mailcom-munication.InthispaperIrestricttheutilizableinformationforoneplayer.IshowthatincontrasttoRubinstein´sresult,inapayo¤dominantNashequilibriumplayersusestrategiesthatconditiononthenumberofmessagessent.Therefore-inductionundertheas-sumptionofboundedrationalbehaviorofatleastoneplayerleadstoamoreintuitiveequilibriumintheE-mailgame.
Keywords:Induction,SubgamePerfectEquilibrium,Information
sets,ImperfectrecallJELClassication:C72
HumboldtUniversity,InstituteofEconomicTheory,SpandauerStr.1,D-10178Berlin,Germany,Ph.:+49-30-20935657,Fax.:+49-30-20935619,e-mail:dulleck@wiwi.hu-berlin.dey
IamgratefulforhelpfulcommentsbyJörgOechssler,UlrichKamecke,ElmarWolf-stetterandseminarparticipantsatUniversityCollegeLondon.FinancialsupportbytheDeutscheForschungsgesellschaft(DFG)throughSFB373isgratefullyacknowledged.
¤1
1Introduction
InhisElectronicMailgameRubinstein(19)illustratesthedi¤erencebe-tweencommonknowledgeandalmostcommonknowledge.Usinghisex-ampleIillustrateanotherpuzzlinge¤ectontheequilibriumbehaviorofthisgamebyapplyinganotionofimperfectrecalltothemodel.Ishowthatboundedrationalbehaviorinthisgamealmostreestablishestheequilibriumthatexistsundercommonknowledgeandfullrationality.
IntheElectronicMailgametwoplayerseitherplayagameGa(with
1probability(1¡p)>2)orGb(withprobabilityp<1).Ineachgameplayers2choosebetweenactionAandB.Inbothgamesitismutuallybenecialforplayerstochoosethesameaction.Figure1describesthegame.Ingamea(b)theParetodominantequilibriumistheonewhereplayerscoordinateonA(B).Ifplayerschosedi¤erentactionstheplayerwhoplayedBispunishedby¡Lregardlessofthegameplayed.Theotherplayergets0.ItisassumedthatthepotentiallossLisnotlessthanthegainMandbotharepositive.
Figure1:TheEmailGame
Onlyplayer1isinformedaboutthegamethatisactuallyplayed.Afterthestateoftheworldisdeterminedtwomachines(oneforeachplayer)com-municateaboutthegame.Ifgamebprevails,player1´smachinesendsan
OsborneandRubinstein(1994)containsatextbookpresentationoftheproblem.
2
E-mailmessage(abeep)toplayer2´smachinewhichisautomaticallycon-rmed.Thisconrmationisconrmedandsoon.Withasmallprobability\"amessagegetslost.Communicationstops,whenoneofthemessages(theoriginalmessageoroneoftheconrmations)islost.Playersareinformedhowmanymessagestheirmachinesenttotheotherplayer.Thentheyhavetomaketheirdecision.
TheElectronicMailgamerepresentsaslightdeviationfromcommonknowledge(almostcommonknowledgeinRubinstein´sterms).Combinedwithperfectrationalitythisleadstodiscontinuousdropinexpectedpayo¤s.Paradoxicallyinthiscasethegamehasanequilibrium,whereplayersneverplaythepayo¤dominantequilibriuminonegame(b)evenifmanymessagesweresent.
ThepointImakeisthatbyreducingtheabilitytoprocessinformationtheexistenceofanadditionalsubgameperfectequilibriumisguaranteed.TheextensionIproposeisthataplayercannotdistinguishamongtheelementsinacertainsetofnumbers,i.e.hecannotdistinguishwetherT;T+1;:::;T+lmessagesweresent.Ifasu¢cientnumberofmessagesissent,playersinthisnewequilibriumcoordinateonthepayo¤dominantequilibriuminbothgamesandthereforethatequilibriumParetodominatesanequilibriumwhereplayersdonotplaythepayo¤dominantequilibrium.
AsinrelatedworkbyDulleckandOechssler(1996)theE-mailgameisanexamplewhereinductionunderboundedrationalityleadstodi¤erentresults.Thereforethehypothesisimpliedbyexperimentaldatathatagentsdonotuseinductioncorrectly ,maybeduetothefactthattheyfacelimitationsonutilizableinformationwhichareduetoboundedrationality.TheE-mailgameshowsthatagentsmightuseinductioncorrectlybutinadi¤erenten-vironment.
Onefurtherresultfollowsfromthemainresultsofthepaper:
Giventhefollowingdescendingorderofthequalityoftheinformationalstructure:commonknowledge,almostcommonknowledge,almostcom-monknowledgeandnon-distinguishability,andnoknowledgeatalltheexpectedpayo¤oftheequilibriumunderthedi¤erentregimesvarynon-monotonically.Thisisincontrasttoresultspresentedintheeconomiclit-eraturewhereeitherknowinglessaboutacharacteristicofthestateoftheworldisanadvantagebutthenknowingevenlessusuallydoesnotworsenthe
McKelveyandPalfrey(1992)andRosenthal(1981)amongotherspresentexperimentsonthecentipedegamethatimplythishypothesis.
3
outcomeforaplayer.Orinothercases,knowingmoreisbetterbutusuallyknowingevenmoredoesnotworsentheresult.Notetheadditionalreduc-tionIproposeisinthesamedimensionasthereductioninRubinstein´soriginalcontribution.
TheproposedargumentcanalsobeappliedtosolvetherelatedparadoxoftheCoordinatedAttackproblem(seee.g.inFaginetal(1995),Chapter6).
2
TheElectronicMailGameanditsexten-sion
UsingthenotationofRubinstein(19)thefeasiblestatessoftheworldarerepresentedasatripleconsistingofthegameactuallyplayedandthenumberofmessagessentbyplayer1andbyplayer2,i.e.s2f(a;0;0);(b;1;0);(b;1;1);(b;2;1);(b;2;2);:::(b;T1;T2):::g.T1andT2arethenumbersobservedbyplayer1andplayer2respectively,T22fT1¡1;T1g.Forsimplicityofno-tationIwillonlyuseapairconsistingofthenumbersofmessagessent.WemustbeingamebifandonlyifT1¸1.Herebyweruleoutthatthemachineofplayer1failstosendamessagealthoughweareinstateb.Notehoweverthatwedonotruleoutthatthismessagegetslost.
Figure2givesagraphicalrepresentationofthisgame,wheretheauto-maticmoves(bynature)ofthemachinesarerepresented.Theoutcomesarethenumbersplayersobservebeforemakingtheirdecisions.
Figure2:InformationOutcomesoftheemailgame
4
InRubinstein´sgame,player1cannotdistinguishbetweentheout-comes(T1;T1¡1)and(T1;T1)(andplayer2cannotdistinguishbetweenthestates(T2;T2)and(T2+1;T2)).InthiscasehealwaysonlyobservesT1(T2).Aplayerchooseshisstrategyconditionedonthenumberofmessagessentbyhismachine.Astrategywillbeplayedintwostatesoftheworld-thetwostatesweretheplayeriobservesthatTimessagesweresentbyhismachine.Hehastobuildbeliefsaboutwhichinformationaloutcomeistheactualone.
TheextendtheE-mailgamebyaddingnon-distinguishabilityofnum-bers.Intheextendedsetuponeplayerisnotabletodistinguishthenumberst2fT;T+1;:::;T+lgwherel2N.Thisinformationstructureiscom-monknowledge.Irefertothisversionastheextendedgame.Otherwisetheplayersplaythegameasitisdescribedabove.
Thenon-distinguishabilityrepresentsthecasewhereaplayercannotob-serveorinterprettheinformationaboutthenumberofmessagessentiftheybelongtotheinterval[T;T+l].Thismightbeduetothefactthatheisnotabletodistinguishthenumbers(interpretthenumbersintherightway)orthatthemachineisnotabletoshowdi¤erentsymbolsiftisinthecriticalinterval.
Thismodicationseemstobeobviousgivenl!1,whichisthecasewherethemachineortheplayerlosetrackatstageT.Justicationsforthisassumptioncouldbetheoverowofthemachine´scapacities(itcanonlycountuptoacertainnumber)orthatrealplayersactuallystopcountingaftertheysentacertainnumberofmessages.TheresultinthiscaseisidenticaltoRubinstein´s(19)problemwherethemaximumnumberofmessagestobesentislimited.Ishowthattheweakerconditionthatplayerscannotdistinguishbetweensomestatesisenoughtoyieldasubgameperfectequilibriumwithcoordination.Thisweakerconditionmaybeduetominorproblemsintheprocessingofinformation,e.g..aplayercanonlyobserveevennumbers.
Languagedi¤erencesmaybeareasonwhyaplayercannotdistinguishbetween,letussay,17and18(e.g..hemaybeunsureoftherightorderof17and18)!.Orthemachinemaynotbeabletoshow18andthereforeitstayson17fortwoturnsandthenjumpsto19.\"
AssumethatoneplaystheEmailgameinChinausingtraditionalchinesenumbers(whichweretaughtbefore)-Iamsureonewouldgetconfusedinterpretingthesymbols.\"
Theproposedlogiccanalsobeappliedtoasituationwhereoneorbothplayerscounteg.onlyevennumbers.Necessaryforthepresentresultsisthattheinformationsets
!
5
Giventhismodicationofnon-distinguishabilityonehasaproblemwhichanalysisissimilartothatoftheproblemofimperfectrecall#inthesensethataplayerforgetshowmanybeepshehasheardormessagedhereceivedbeforebutheisremindedonceinawhileabouttheactualnumber.Theplayercannotdistinguish/rememberwhetherhismachinesentT;T+1;:::orT+lmessagesandthereforehehastochooseoneactionforallobservationsintheinterval.
3Results
Intheoriginalgame,Rubinstein(19)provesthatthereisnoNashequi-libriumwhereplayersconditiononthenumberofmessagessent:
Proposition1(Rubinstein(19))ThereisonlyoneNashequilibriuminwhichplayer1playsAingameGa.InthisequilibriumplayersplayAindependentlyofthenumberofmessagessent.
TheformalproofisprovidedinRubinstein(19).
Thebasicideaoftheproofisthatinstates(0;0)and(1;0)theobviousequilibriumis(A;A)-givenp<1.Usingthisasthestartofaninduction,2onehasthatuptotheobservationofT¡1foreachplayeritisoptimaltoplay
\"tobeattherstoftwoindistinguishableA:Theconsistentbeliefz=\"+\"(1¡\")outcomes(T;T¡1)and(T;T)forplayer1[or(T¡1;T¡1)and(T;T¡1)
1.Giventhestatedbeliefandthatuptostateforplayer2]isgreaterthan2(T¡1;T¡1)[or(T;T¡1)forplayer2]thebestreplyoftheotherplayerisA,itisabestaanswertochooseAiftheinformationsetisreachedbecausethisdecisionisindependentofthestrategyoftheotherplayeratthesecondindistinguishableoutcomeintheinformationset.ByinductionthisistrueforeveryobservedT.
aredividedbythecorrespondinginformationsetsoftheotherplayerinawaythattherstpart(thestatesthatareinthecorrespondingrstinformationsetoftheotherplayer)issmallerthantherestoftheinformationset.ThereforethenextinformationalstructurethatwouldyieldtheRubinsteinresultiswherebothplayercannotdistinguishthreesucceedingnumbersandtheinformationsetsoverlapexactlythewaythatineachsetthreeoutcomesareineachofthecorrespondingsetsoftheotherplayer.#
PiccioneandRubinstein(1996)andAumannetal.(1996)inadditiontoaspecialissueofGamesandEconomicBehavior1996(forthcoming)covertheproblemofimperfectrecallinanexampleofanabsent-mindeddriver.AnapplicationtothecentipedegamecanbefoundinDulleckandOechssler(1996).
6
Thefollowingpropositionstatesthemainresultsofthepaperfortheextendedgamewhereoneplayersu¤ersfromnon-distinguishability.
Proposition2IfLisnottoolargerelativetoMthenthereexistsaNashequilibriumsuchthatbothplayersplayBiftheirmachinesentt¸Tmes-sagesandAinallothercases,givenoneplayersu¤ersfromnon-distinguishabilitydistinguishamongthet2fT;T+1;:::;Tdistinguishtheresultamonggivenplayerthet12su¤ersfT;T+from1;non-distinguishabilitytheweproceedasinRubinstein:::;(19)Toftheoftheargumentworldwhereaboveort to(T;beTat¡1)outcomefromi=0 \"Aforsureinthespeciedequilibrium.ofplayingplayer+lgreply2B. by(toisplayerplayoptimalBatthisinformation2ifishetoobservesplayBwheneverat¸T).playBwhenevertheyobserveat2fT;areintheydosofort>T+l.Atoutcome(TTtwosenttheisinformationtoplayBgivensetwherethestrategyheobservesoflgdistinguishindistinguishableoutcomesinthistheinformationthesuccessorsbelieftobetweenoutcomeswhereisbeagainatoutcomezA.The(sameT;T)insteadtheplayercase1thatsu¤ersonefromnon-distinguishability. argumentg.Withoutlossatoftheplayersu¤ersonlywithLetgeneralityperiodszA=Iwhereheobserve22l+1\"assume.thatplayeri=0 \"(1¡\")i 7 lg: lupg.Toshowthetoreplyformalout-to2(lT;+T1¡suc-1)1¡zAzAM= 22l+1givenithe =1 observesplayertl;+1:::;any;TT++lg,playert¸l)observesset.oftappliesoneofprobabilityoneanymay t2suchthathecannot+Proof.Firstweproofsuchthathecannot+thatthisisanequilibrium,come(T;T¡1).Seeforproof.ForanystatebestplayAregardlessIfPlayer1cannotitscessorsheformswhereplayer2playsIf i (1¡\")>LthensetspeciedstrategyGiven1´sstrategythebesthe2fT;T+1;:::;TGiventhatplayers+1inductionimpliesthat+player1´sbestreplythatT+l+1messagesotherwhoplaysBattheIfplayer2cannothe2fT;T+1;:::;T+thenon-distinguishableasinthecasewhereNextIanalyseaof´fromnon-distinguishabilityfT;T+1;:::;T+lsu¤erfromnon-distinguishability.(2¡\")MzAProposition3If1¡M>Land(1¡´)·thenthereexistsaNashzAM+LequilibriumwherebothplayersplayBwhenevertheyobserveat¸T+1givenplayer1su¤erswithprobability´fromnon-distinguishabilitysuchthathecannotdistinguishamongthet2fT;T+1;:::;T+lg:ForM=Lthis \".impliesthatsuchanequilibriumexistsif´¸12fersThefollowingstrategiesaretheequilibriumotherwise.fromnon-distinguishabilityBIfplayerhechoosesobserveswheneverheobserves1doesatnot>Tsu¤erandgivenProof.theastatedt¸TrestrictionsandAotherwise.onMIcomeproposition(TI¡proof1;T¡that1)thethestrategiesstrategies,LfollowarehisIfplayer1. 1su¤ersfromnon-distinguishabilityheobservesdoesbestnotreplysu¤erisgivenfromasnon-distinguishabilitydescribedgivenobservesplayaTtis>toTplayAbytheargumentset.Banswers. Thereforebecausegivenplayerthengiventhe2playsthestrategyBstatedatbothofheobservesGiventhethatstrategyexactlyofplayerTmessages1thepayo¤´M+(1¡´)(z(wherez=\"of(T+1;T).Player\"+\"(1¡\"2)istheconsistent´spayo¤is0ifheif(1)Bquestion. becauseGiven¸0.theThisisequivalentto(1¡´)playerobservation1choosesofBanyattboth>TForlargeThereforeM=Lgiventhecondition(1¡´)aNashenoughequilibriumcomparedthewheretoprobabilitythetoplayersprobabilityconditionBifinhequestion:observesotherwise.non-distinguishability,Playerbest´proof. thatthisfromreplytheargumentstrategies.thestatedpropositioninthehisbeststrategyreplyoftheofproofplayerof2propositionhis2outcomesplayer1´sstrategiesinbeentoplayersent2isifgivenheL)+(1¡z)M) beliefthatthestatechooses(2 ¡\")M A:ThereforebyM+Lasstatedinoutcomesplayer2hisinbesttheinformation(2¡\")Msu¤erM+Lsimpliesthatfromnon-distinguishabilitytoonathemessagenumbergetstPlayer¸heTchoosesand1suf-AequilibriumBifheUpthetoproofout-ofensurestoplayerthatwhere2.If1.IfheinformationreplyishetoarebestBwhenever(1) T;T)insteadabestreply proposition.istochoosesetin12\".thereexistsissent. IfafromA2chooseswillisanandin2ofupstrategybesthisplayerplayshaveby ¡is(Bisthe·reply·´¸lostofmessages8 Note,givenM=Lthisprobabilitymaybeinnitesimalsmallgivenasmall\". Whenthe(potentially)non-distinguishablestatesarereacheditisopti-maltoplayB.IncontrasttoRubinstein´s(19)resultforthecasethatthenumberofmessagessentislimited(whichisequivalenttol=1)itissu¢cientthatnon-distinguishabiltyappearsonlyinearlierstages(l<1).OnceitisoptimaltoplayBatanystagetheninductionleadstotheresultthatinthesucceedingstages,playingBistheoptimalstrategy. Inthecasewhereoneplayersu¤ersfromnon-distinguishability,playersinthepayo¤dominantequilibriumuseastrategywheretheyconditiontheiractiononthenumberofmessagessent. Corollary1Ifoneplayersu¤ersfromnon-distinguishabilitytheoptimalstrategiesforplayerswhoobservethatexactlyTmessageshavebeensentdi¤ercomparedtothecasewithoutnon-distinguishability,giventheobservednumberofmessagessentisgreaterthenthenumberwherethenon-distin-guishabilitya¤ectstheutilizableinformation. Therefore,thedecisionofplayersdoesnotonlydependontheinformationtheyhaveatthepointoftimewheretheyhavetotaketheirdecision.Italsodependsontheinformationavailabletothematanearlierpointintime.EventhoughthenumberplayersobserveinRubinstein´soriginalgameandthepresentedextendedversionisthesame,thebest-reply-strategiesdi¤erbecauseofaninformationaldeciencywhichcouldhavearisenatanearlierstageinthegame(butwhichactuallymightnothavehadanye¤ectontheutilizableinformation). Corollary2Theexpectedpayo¤sinthecoordinationgamethatisthebasisfortheE-mailgamevarynon-monotonicallyintheinformationstructure.Theexpectedpayo¤undercommonknowledgeintheE-mailgameis¦=M.GivenRubinstein´salmostcommonknowledgetheexpectedpayo¤is¦e=pM.Introducingnon-distinguishabilityandthereforeafurtherreductionofutilizableinformationatonlyone-pointintimeonegetslim \"¡!0 e ¦=M.Inthecasethatonlyoneplayerisinformedofthestateoftheworldandnocommunicationtakesplace,oneisbackat¦e=pM. e 9 4Conclusions Rubinstein(19)employstheElectronicMailgametoillustratethatthepayo¤svarydiscontinuouslyintheassumedinformationstructure,i.e.al-mostcommonknowledgeleadstodi¤erentoptimalbehaviorcomparedtotheoptimalbehaviorundercommonknowledge.Inthisgameboundedratio-nalityleadstoacontinuityintheexpectedpayo¤sifonereducesthequalityoftheavailableinformation(fromcommonknowledgetoalmostcommonknowledge).Havingatonestageintimeadi¤erentoptimalstrategy,induc-tioniscarriedoutinadi¤erentwayandleadstodi¤erentoptimalbehavior.Rubinstein´scaseshowsthatknowinglessimpliesawelfaredecreaseforbothagents.Theextensionofhisgameillustratesthatknowingevenlessthanintheoriginalgamewithimperfectinformationincreaseswelfarealmosttothelevelthatisreachedundercommonknowledge.Afterall,giventheworstsituationinthisgame(nobodyoronlyplayer1knowsthestateoftheworld)wehaveagainauniqueequilibriumasunderalmostcommonknowledgewiththelowexpectedpayo¤s.Thereforethisisanexampleofnon-monotonicityinavailableinformation. Anotherparadoxicalaspectofthisgameisthatevenifagentsknowthedi¤erencebetween16,17and18andtheyobserve17,theyplayBiftheycannotdistinguishbetweenletussay7and8.Alocaldeciencyininfor-mationprocessingabilitieschangestheoptimalstrategyeventhoughatthedecisionmakingpointintimetheavailableinformationisthesameasinthecasewherenolocaldeciencyexists. References [1]Aumann,R.J.,Hart,S.andPerry,M.(1996),TheAbsent-Minded Driver,DiscussionPaper#94,HebrewUniversityofJerusalem(GamesandEconomicBehavior,forthcoming)[2]Dulleck,UweandOechssler,Jörg(1996),TheAbsent-MindedCen-tipede,EconomicsLetters,forthcoming[3]Fagin,Ronald,Halpern,JosephY.,Moses,Yoram,Vardi,MosheY. (1995),ReasoningAboutKnowledge,MITPress,Cambridge[4]McKelvey,R.andPalfrey,T.(1992),Anexperimentalstudyofthe centipedegame,Econometrica,60,p.803-836 10 [5]Osborne,MartinJ.andRubinstein,Ariel(1994),Acourseingame theory,MITPress,Cambridge[6]Piccione,M.andRubinstein,Ariel(1996),OntheInterpretationofDe-cisionProblemswithImperfectRecall,GamesandEconomicBehavior,forthcoming[7]Rosenthal,R.(1981),Gamesofperfectinformation,predatorypricing andchain-storeparadox,JournalofEconomicTheory,25,p.92-100[8]Rubinstein,Ariel(19),TheElectronicMailGame:StrategicBehavior UnderAlmostCommonKnowledge,AER,Vol.79,No.3,p.385-391 11 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- azee.cn 版权所有 赣ICP备2024042794号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务