您好,欢迎来到爱站旅游。
搜索
您的当前位置:首页Advances in Studies of Genetic Improvement of Sugarcane

Advances in Studies of Genetic Improvement of Sugarcane

来源:爱站旅游
AsianAgriculturalResearch2016,8(11):66-70

AdvancesinStudiesofGeneticImprovementofSugarcane

MingfuWEN,JunxianYANG*,FangyinPAN,WenlongWU,YueguiCHEN,JinyanGUAN

GuangzhouSugarcaneIndustryResearchInstitute/GuangdongKeyLabofSugarcaneImprovement&Biorefinery,Guangzhou510316,China

AbstractSugarcane(Saccharumspp.)isalargeperennialherbaceousplantthatiscultivatedintropicalandsubtropicalregionsofthe

world,anditisalsooneofthemostefficientcropsintheworldinconvertingenergyfromsunlightintochemicalenergy.Asanessentialsugar

sugarcaneisreceivinganincreasingconcernforitsvarietyimprovement.Traditionalbreedingandcultivationtechniquescropandenergycrop,

havecontributedalottoincreasingsugarcaneyieldandsucrosecontent.Inrecentyears,developmentandapplicationofbiotechnologyprovidemuchhelpforgeneticimprovementofsugarcane.Forconvenienceofbreedersfullyknowingadvancesinstudiesofsugarcanegeneticimprove-ment,thispaperelaboratedconventionalbreeding,genomics,GMtechnology,andmolecularmarkerassistedbreeding.KeywordsSugarcane,Geneticimprovement,Genomics,Transgenetechnology,Molecularmarkerassistedbreeding

1Introduction

Sugarcane(Saccharumspp.)isthelargestsugarcanecropinChi-naandtheworld.Sucroseaccountsformorethan75%ofthetotalsugaryieldoftheworld,andmorethan90%ofChina'ssugaryield.Sugarcaneisalsothefirstgenerationbioenergycrop,anditcanbeusedasrenewableenergyforproductionoffuelethanolandbiomassproducts.Fromthe1970s,manycountriesstartedformu-latingthecleanenergystrategyofdevelopingfuelethanoltore-placeoil.Amongthesecountries,Brazilwasmostsuccessfulinusingsugarcanetoproducefuelethanolaspowerenergyofauto-mobile.In1979,thefirstbioenergyautomobileusingfuelethanolasdriveappeared.By2003,therewere15.5millioncarsusingmixedfuelofethanolandoil,andtherewere2.2millioncarscompletelyusingethanolasthefuel[1].In2010,theyieldofbioenergyusingsugarcaneasmainmaterialhadreplacedabout

bringingittobethecountry47.6%energyconsumptionofBrazil,[2]

withhighestbioenergyutilizationrate.Sugarcaneisthegeneral-lyrecognizedC4plantwithhighphotosyntheticrateanddrymatteraccumulationability[3-4],andisthecropwithhighestperunitare

[5]

yielduptooneton.AccordingtostatisticsoftheFoodandAg-ricultureOrganization(FAO),in2011/2012sugarcanecrushingseason,thetotalsugarcaneyieldofBrazilreached7.34×108t,withtheperunitareayieldupto76.45t/hm2.InIndiaandChi-na,theplantingarea,totalyield,andaverageyieldofsugarcane

3.42×108t,and69.25t/hm2,1.73×106was4.94×106hm2,

hm2,1.15×108t,66.52t/hm2separately.

2Targetofsugarcanegeneticimprovement

Sugarcaneisanessentialsugarcropandenergycrop,anditsvari-etyimprovementisreceivingcloseattention.Sugarcanehasuniquegeneticmode.Itisallopolyploidcropgeneratedthrougha

2016Accepted:November10,2016Received:September1,

SupportedbyScienceandTechnologyPlanningProjectofGuangdongProvince(2014A030304012,2014A020208012,2015A030302009);ScienceandTech-nologyPlanningProjectofZhanjiangCity(2015A03014).*Correspondingauthor.E-mail:siriyjx@163.com

seriesofhybridizationofpolyploidSaccharumofficinarumL.(2n=80,X=10)asfemaleparentandSaccharumspontaneumL.(2n=40~128,X=8)asmaleparent.Thenumberofchro-mosomesis100-150,about75%-85%fromSaccharumoffici-narumL.,and15%-25%fromSaccharumspontaneumL.Inthefirstandsecondtimeofhybridizationprocess,chromosomesweredeliveredin2n+nspecialmanner.Agronomiccharacterssuchassugarcontentandyieldofhybridgenerationwererapidlyrecoveredandstabilized.Thisprocessiscallednobilityprocessofsugarcane[7].However,suchuniquegeneticmodeincreasesthedifficultyinsugarcanegeneticimprovement.Withrapiddevelop-mentofmodernbiotechnology,anddropofgenomesequencingcosts,thedevelopmentofsugarcanefunctionalgenomicsandstructuralgenomicsplaysagreatroleinpromotingfurtherdevelop-mentofsugarcanegeneticimprovement.Varietyisthekeyforde-velopmentofthesugarcaneindustry.Finevarietynotonlyincrea-reducesproductionsestheperunitareayieldandsucrosecontent,

costs,butalsoextendsthecrushingperiod,increasesequipment

andobtainshighereconomicbene-utilizationrateofsugarfactory,

fits.WithreferencetosugarcaneproductionanddevelopmentinChinaandforeigncountries,itisnecessarytoconstantlyupgradevarieties,topromotesustainableandhealthydevelopmentofsug-arcaneindustryandsatisfythemarketdemands.Accordingtore-quirementsofmodernsugarcaneindustry,thesugarcanebreedingtargetscanbeclassifiedintotwotypes:(i)improvementofvarie-tytraits,includingimprovingsugarcontent(sucrosecontent,brix,apparentpurity,andgravitypurity),increasingyield(tille-ringcapacity,effectivestalknumber,stalkdiameter,plantheight,growthrate,sproutingrate,andratoonperformance),in-creasingstressresistance(diseaseresistance,insectresistance,lodgingresistance,droughtresistance,coldresistanceandbarrenresistance),andselectingvarieties(sugarcanehairanddefolia-tion)[8-9];(ii)cultivationofdifferentpurposesofvarieties,mainlyincludingsugartypesugarcane(fiberfraction≤14%),energytypesugarcane(fiberfraction≥30%),andsugarenergytypesugarcane(fiberfraction<30%)[10].

MingfuWENetal.AdvancesinStudiesofGeneticImprovementofSugarcane3Advancesinconventionalbreedingofsugarcane

3.1DevelopmentstagesofsugarcanebreedingThedevel-opmentofsugarcanebreedingcanbedividedinto5stages[9].(i)Thestageofbreedingusingtropicalstrain.Thisstagestartedfrom1858whenBarbadosreportedthatsugarcanecanbearfruit.Atthisstage,maincharacteristicsofvarietiesincludedhighsugarcontent,lowfiberfraction,highpurity,lowadaptation,weakra-toon,andpoordiseaseresistance,suchasH109,B716,andQ813,etc[11].(ii)Thestageofbreedingusingnobilityprocesstoselectnoblevarieties.In1885,Soltwedelmadeexperimentofhy-bridizationbetweensugarcaneandErianthusarundinaceus[12];in13,MoquetteandWakkerobtainedhybridvarietyoftropicalstrainBlackCheribonandIndianstrainGansha[13];in17,Ko-bushybridizedIndianstrainChunniandtropicalstrain[14];in1911,WilbrinksuccessfullyhybridizedIndianstrainGanshaandtropicalstrain[15];later,JeswietbackcrossedthetropicalstrainwiththehybridgenerationobtainedbyWilbrink,rapidlyrecov-eredandstabilizedsugarcontentandyieldofhybridgenera-tion[16];in1921,JeswietsuccessfullybredPOJ2878finevarietythroughhybridization[17].Thisstageopenedthecurtainofinter-specifichybridization,andrecoveredandstabilizedsugarcontentandyieldofhybridgeneration,andbredexcellentvarietieswith

highsugarcontent,

highfiberfraction,highadaptation,strongra-toon,andhighdiseaseresistance,suchasCo281andCo290[18].(iii)Thestageofbreedingusingnoblevarieties.From1930to1950,itwasthestageofhybridizationusingnoblevarietiestose-lectexcellentnewvarieties.TypicalexamplesincludedCo419bredusingPOJ2878×Co290in1937,popularNCo310inthe1950sand1960sbredin1939,andH32-8560bredbyHawaiiResearchCenterin1945(accountingformorethan60%ofthelo-calplantingarea)[17].Thisstagemainlyusednoblevarietiestohybridizeandbreedmoregermplasmresources.(iv)Thestageofbreedingusingnoblehybridvarieties.From1950to1965,noblehybridvarietieswereusedtoselectmodernsugarcanevarietieswithhighsugarcontent,highyield,highstressresistance,andexcellentratoon,andthesenewvarietiesweredistributedinallsugarcaneplantingareas[19].Atthisstage,excellentgermplasmresourcesbredthroughnobilityprocesswereusedashybridpar-ent,tofurtherconsolidateexcellentgenesandselectbettermodernsugarcanevarieties.(v)Thestageofexpandingvarietygeneticconstitutionsource.Atthisstage,itmainlywasengagedinrapid-lyimprovingsugarcontent,yieldandotheragronomictraitsthroughconstanthybridizationorbackcrossingtoincreasefunda-mentalsubstances[20].

3.2BreedingofsugarcanevarietiesinbothChinaandfor-eigncountriesNewsugarcanevarietiesbredbyforeigncountriesmainlyincludeRBvarietiesbredbyBrazilianFederalUniversityandIACvarietiesbredbyCampinasAgriculturalResearchInstitu-teofSaoPaulo[21],suchasRB99395andIAC86-2210;CPse-ries,Hseries,andHoCPseriesbredbyUSDAARSSugarcaneFieldStationCanalPoint,HawaiiResearchInstitute,andLouisi-anaSugarcaneResearchInstitute[22];Co997,

Co1001,andCo52767

bredbyIndia[22];Q174,Q205,andQ208bredbyAustralia[23];

POJandEKvarietiesbredbyIndonesia.Thebreedingofsugar-caneinChinacanbedividedinto3stages[24-25].(i)Breedingoflocalvarieties.Thisstagewasmarkedbyplantinglocalvarietiesassugarrefiningmaterials,typicalvarietiesincludedbamboocane,reedcane,andRohancane.(ii)Introductionofforeignvarieties.Atthisstage,foreignvarietieswereintroducedandpop-ularized,andtypicalvarietiesincludedPOJ2878,POJ2725,NCo310,Co290,Co281,CP49-50,andCP34-120.(iii)Self-breedingvarieties.Atthisstage,varietiesbredbyChinastartedreplacingforeignvarieties.Inrecentyears,self-breedingvarietiesofvarietiesmainlyincludedYuetang,Guitang,Mintang,Yunzhe,Liucheng,andTaitang.Atpresent,newTaitang22,Yutang93-159,Yutang00-236,Guitang21,andLiucheng05-136takeup

thedominantpositionofsugarcaneplantinginChina.However,thegrowthrateforsugarcontentandyieldofnewsugarcanevarie-tiesbecomessmallerandsmaller.Thiscanbeprovedbyevalua-tionof4mainvarieties,Yuetang85-177,Yuetang99-66,Yuet-ang00-236,andYuetang03-393.Waclawovskyelal.[26]foundthatthegrowthrateofsugarcaneyieldintheworldremainedat

1%-1.5%inrecentyears,anditwilldeclineinfuture.ThismaybelargelybecausebreedingparentmainlycomesfromF4andF4ofPOJ2878[27]andgermplasmresourcesforimprovementareverylimited.Inthissituation,biotechnologymaybecomethekeyforsugarcanegeneticimprovement.

4Advancesinstudiesofsugarcanegeneticimprove-mentthroughbiotechnology

4.1SugarcanegenomicsSugarcanegenomicsisanindispen-sabletoolforfuturesugarcaneimprovement.However,complexgenomeofallopolyploidandinterspecifichybridizationofmodernstrainshinderstudiesofsugarcanegenomicsandapplicationofge-nomicsinsugarcanebreedingprocess.Bynow,inNCBIdata-base,thereare31555nucleotidesequences(including1216mR-NAsequences)availablefromdifferentsugarcanevarietiesand284818ESTsequences(http://www.ncbi.nlm.nih.gov/).TheseESTsequencescomefromcDNAlibraryandmanytran-scriptsofmorethan70varietiesofsugarcane,

andmaterialsmain-lyincludeseedlings,roots,stalks,leaves,flowers,andseedsof

sugarcane,

andcallustreatedbynonbiologicalstressandseedlingsinfectedbyendogenousnitrogen-fixingbacteria[28].Atpresent,

bacterialartificialchromosome(BAC)libraryforsugarcaneisbuiltbyhybridstrainR570withnumberofchromosomeof2n=115.Thislibrarycontains283158clonesandcovers1.3timesofpolyploidygenomeofthisvariety(itispredictedthatthegenomeis10Gb)[29].ItisreportedthatscientistsfromBrazilandothercountriesarebuildingfinephysicalmapforthisBAClibrary[30].Meanwhile,scientistsarebuildingBAClibraryandthelibraryclonesequencingforBrazilianvarietySP80-3280[31].Besides,in

cooperationwithShenzhenBGI,SugarcaneResearchCenterofChineseAcademyofAgriculturalScienceisbuildingBAClibraryandwholegenomesequencingforthinstalkwildsugarcanevariety

68AsianAgriculturalResearch2016

GXS87-16(2n=)[32].ThebuildingofsugarcaneBAClibraryanddetailedphysicalmapinformationareofutmostimportancetounderstandingstructureofsugarcanegenome.Inthewholegenomesequencing,sorghumisacropwithcloseaffiliationwithsugar-cane,anditsgenomesequenceisofmuchhelpforstudiesofsug-arcanegenome,andcompletionofsorghumgenomesequencingprovidesimportantcomparativegenomicstoolforsugarcanege-nomicstudies[33-34].Wangetal.[35]carriedouthybridizationinBAClibraryusing1961singlecopysorghumoligonucleotideprobesandsugarcanecommercialvarietyR570,obtained20sug-arcaneBACs,witheachBACcorrespondingtosorghumchromo-somearm.About95.2%sequencesofcodingareaofsugarcaneBACsmatchthesorghumsequences.Ifusingsorghumgenomeastemplatetosequencethecontig,itcancover78.2%of20BACs.About53.1%sugarcaneBACsmatchsorghumsequences.Inare-asthatcanbelinked,209genesofsugarcanehavebeenannota-ted,202sorghumgeneshavebeenannotated,including17genesuniquetosugarcane,andallhavebeenverifiedbysugarcaneex-pressedsequencetags(ESTs),in12genesuniquetosorghum,onlyonehasbeenverifiedbysorghumESTs.In17genesuniquetosugarcane,12genesdonothavematchingproteininGenBanknon-redundantproteindatabase,andtheymayothertypesofpro-teinparticipatingincodingsugarcanespecialprocess.Relativeto

thesugarcane,

linealhomologicalareaofsorghumexpands,whichisrealizedmainlythroughincreaseinreversetranscriptiontranspo-son.Therefore,sugarcaneandsorghumgenomesarecollinearinmostgeneareas.SorghumgenomecanbeusedasDNAassemblytemplateofallopolyploidsugarcanegenomes.

4.2SugarcaneTransgenetechnologyTheinvitrocultureandregenerationsystemtechnologyhavebeenestablishedandgraduallyimprovedsince40yearsago[36],whichisveryimportantfordevelopmentofsugarcanegenetictransformationsystem.Nev-ertheless,aneuploidypolyploidy,hugegenomeandcomplexge-neticbackgroundofsugarcanepresenttheproblemoflowtransfor-mationefficiencyoftransgenetechnology.Sincegenegunmethod(particlebombardment)featuresnotsubjecttohost,widetargetreceptortype,highcontrollability,simpleandrapidoperation,itisamethodmainlyusedintheearlyperiodofthesugarcanetrans-genetechnology[37-38].Withconstantdevelopmentandoptimiza-tionofgenetictransformationmethodswithfeaturesoflowcosts,highsuccessrate,andsinglecopyofallogenicgenes,andhighgeneticstability,ithasbeenwidelyappliedinsugarcanetransgene

technology[39]

.Intheprocessofsugarcanegenetictransformation,mainrestrictivefactorsincludelowtransformationefficiency,ac-tivetransgene,mutationinbodycellclone,anddifficultback-crossing[40].Itisthusrequiredtofurtheroptimizethetransforma-tionmethod,bettercontrolthetransgeneexpression,andrealizestableexpression.Thesugarcanetransgenestudiesfocusonin-creasingsucroseaccumulation,stalkyield,improvingdiseasere-sistanceandstressresistance[40-45].Researchesindicatethatgenesparticipatinginmetabolismofcellwallhavedifferencesin

expression[40].ThroughcDNA-SCoTanalysisofratoonstuntingdiseaseinducedsugarcanedifferenceexpressiongene,theyfound

manygenesparticipatingininteractionofratoonstuntingdis-ease[46].ThroughsubtractivelibrarytechnologyandcDNAchiptechnologyanalysis,SSADHrelatedtosugarcanewaterstressre-sponsewasscreened[47].Throughexcessiveexpressionordown-wardmodulationofviruscoatprotein,mRNAexertsresistanceagainstSCMV[48],SCYLV[49],andFDV[50].ThroughadjustingexpressionofSc-ERSgene,itisabletostrenthenphotosynthesis

ofsugarcaneleavesandimprovedroughtresistanceofsugar-cane[51].Thesekeygenesarefavorableforcultivationofnewsug-arcanevarietieswithhighyield,highsugarcontent,andhighad-aptation.Atpresent,non-commercialsugarcanetransgenestrains

havemadebreakthroughadvancesandsomestrainsareundergoing

thefieldexperiment[21,

40]

.However,limitationofregulationsoftransgeniccropswillretardthereleaseofcommercialtransgenicvarieties.Therefore,thebreedingandapplicationofanewtrans-genicvarietytakesaconsiderablelongtime.

4.3MolecularmarkerassistedbreedingAtpresent,thenumberofsugarcanechromosomesforgeneticmappinganalysisismorethan100,butgenomesequenceformolecularmarkerisverylimited.Mostgeneticmapsarebasedondominantmarkers,whichareusedassingledosemarkers.Posteritysegregationratioexistsasper1:1(markedas\"1\"),doesnotexist(markedas\"0\")forstatisticalanalysis.Forallopolyploidsugarcane,suchstatisticalmethodwillonlyprovideanapproximatevaluewhenestimatingtherecombinationrateandlinkage;besides,someevidencesindicatethatsingledosemarkeronlydetectsabout70%polymorphismlo-ci[52].13sugarcanemappinggroupswereusedtobuild18molec-ulargeneticlinkagemap,and1500-2000markerswereused[53],includingRFLP[],AFLP[55],TRAP[],EST-SSR[56]and

DART[57],indicatingallbuiltsugarcanegeneticmapsareincom-plete.Toobtainhighdensitygeneticmapscoveringthewholesug-arcanegenome,itneedsdevelopingmoreSNPmarkers.However,throughQTLpositioningofsugarcanerelatedtraits,ithasobtainedQTLlocirelatedtodiseaseresistance,stressresistance,yield,andsugarcontent[58-62].Becauseofcomplexityofsugarcanege-nome,fortargettraits,mostgenomescannotbescanned,andsuchdefectlimitstheapplicationofthemolecularmarkerassistedselection.Atthesametime,thesugarcanegeneticmodeindicatesthatthegeneticlinkageunbalancewidelyexists[63].Whentraitre-latedmolecularmarkersareusedtodetermineQTLofsugarcanethroughlinkageanalysisandcorrelationanalysis,lowdensitymarkerandroughgeneticstatisticalmethodsarestillrelativelydif-ficult.Insugarcanebreeding,itisachallengingtasktousemo-lecularmarkerassistedselection.Manyimportanttraitsarejointly

determinedbymanytraitloci,

andeachtraitonlycontributesalit-tletotheoverallphenotype[]

.ThesugarcaneQTLpositioningismainlybasedonsingledosemarkeranalysisorcompositeintervalmapping[63].Toobtaineffectiveresults,itneedsdevelopingnewresearchmodelsandstatisticalmethods,andalsoconsidersinflu-enceofinteractionbetweenQTLandenvironmentandgenecorre-lation.Therefore,therearestillmanychallengestobesolvedin

MingfuWENetal.AdvancesinStudiesofGeneticImprovementofSugarcanesugarcanemolecularmarkerassistedbreeding.

5Conclusions

Sugarcaneisanessentialsugarcropandenergycrop,anditsvari-etyimprovementisreceivingcloseattention.Traditionalbreeding

andcultivationtechniqueshavecontributedalottoincreasingsug-arcaneyieldandsucrosecontent.Withrapiddevelopmentofmod-ernbiotechnology,relyingonitsimportanceinagricultureandin-dustries,sugarcaneattractsmanyscientiststomakejointeffortsinmolecularbiology,bioinformatics,andgenetics.Besides,withapplicationofnewgenerationoflowcostDNAsequencingtechnol-ogy,theallopolyploidsugarcanegenomesequencingwhichwascostlyinthepastbecomespossible.Infuture,biotechnologyge-neticimprovementtechniquewillacceleratetheprogressoftradi-tionalsugarcanebreedingandcultivatemoreexcellentsugarcanevarieties.

References

1]BORREROMAV,PEREIRAJTV,MIRANDAEE.Anenvironmental

managementmethodforsugarcanealcoholproductioninBrazil[J].Bio-massandBioenergy,2003,25(3):287-299.2]HOFSETZK,SILVAMA.Braziliansugarcanebagasse:Energyandnon-energyconsumption[J].BiomassandBioenergy,2012,46:5-573.3]RAEAL,JACKSONMA,NGUYENCH,etal.Functionalspecialization

ofvacuolesinsugarcaneleafandstem[J].TropicalPlantBiology,2009,2(1):13-22.4]ARNOULTS,BRANCOURT-HULMELM.Areviewonmiscanthusbio-massproductionandcompositionforbioenergyuse:Genotypicandenvi-ronmentalvariabilityandimplicationsforbreeding[J].BioenergyRe-search,2015,8(2):1-25.5]LOOMISRS,WILLIAMSWA.Maximumcropproductivity:anestimate

[J].CropScience,1963,3(1):67-72.6]FAO.FAOSTATdata[EB/OL].http://faostat3.fao.org/home/index.

html,2011.7]BUTTERFIELDMK,D'HONTA,BERDINGN.Thesugarcanegenome:

asynthesisofcurrentunderstanding,andlessonsforbreedingandbio-technology[J].ProcSAfrSugTechnolAss,2001,75:1-5.8]LIQW,DENGHH.Majorproblemsandstrategyinsugarcanebreeding

andvarietyextensioninChina[J].SugarcaneandCanesugar,2011(4):70-76.(inChinese).9]MINGR,MOOREPH,WUK,etal.Sugarcaneimprovementthrough

breedingandbiotechnology[J].PlantBreedingReviews,2006,27:15.10]LOUREIROME,BARBOSAMHP,LOPESFJF,etal.Sugarcane

breedingandselectionformoreefficientbiomassconversionincellulosicethanol[M].Routestocellulosicethanol,SpringerNewYork,2011:199-239.11]KENNEDYAJ,RAOPS,ORIOLP.Handbook,October2000[J].

Cirad,2011.12]STEVENSONGC.Geneticsandbreedingofsugarcane[M].London:

Longmans,Green,1965.13]JESWIETJ.Thedevelopmentofselectionandbreedingofthesugarcane

inJava[C].ProcCongrInternSocSugarCaneTechn,1930,3:44-57.14]SMARTTJ,SIMMONDSNW.Evolutionofcropplants.ed.2[J].

LongmanScientific&Technical,1995.15]ETHIRAJANAS.Sugarcanehybridizationtechniques[Z].In:anony-mous(eds.),CopersucarInternationalSugarcaneBreedingWorkshop.

Copersucar,Brazil,1987:129-148.16]SIMMONDSNW.Evolutionofcropplants[M].(London):Longman

69

GroupLtd.,1976.[17]JESWIETJ.Thedevelopmentofselectionandbreedingofthesugarcane

inJava[C].ProcCongrInternSocSugarCaneTechn.,1930:44-57.[18]ROACHBT.Originandimprovementofthegeneticbaseofsugarcane

[J].ProcAustSocSugarCaneTechnol,19,11:34-47.[19]TEWTL.Worldsugarcanevarietycensus-year2000[J].SugarCane

International,March/April2003:12-18.[20]WALKERDIT.Manipulatingthegeneticbaseofsugarcane[C]//Coper-sucarInternationalSugarcaneBreedingWorkshop.Copersucar,Piraci-caba,Brazil.1987:321-334.[21]CHEAVEGATTI-GIANOTTOA,ABREUHMCD,ARRUDAP,etal.

Sugarcane(Saccharum×officinarum):areferencestudyfortheregu-lationofgeneticallymodifiedcultivarsinBrazil[J].Tropicalplantbiol-ogy,2011.[22]DUNCKELMANPH,BREAUXRD.Breedingsugarcanevarietiesfor

Louisianawithnewgermplasm[J].ProcIntSocSugarCaneTechnol,1972,14:233-239.[23]HEINZDJ.WildSaccharumspeciesforbreedinginHawaii[J].Proc

IntSocSugarCaneTechnol,1967,12:1037-1043.[24]LIQW,CHENZY,LIANGH.Modernsugarcaneimprovementtechnolo-gy[M].Guangzhou:SouthChinaUniversityofTechnologyPress,

2000:11-13.[25]CHENRK,XULP,LINYQ,etal.Modernsugarcanegeneticsand

breeding[

M].Beijing:ChinaAgriculturePress,2011:2-12.[26]WACLASOVSKYAJ,SATOPM,LEMBKECG,etal.Sugarcanefor

bioenergyproduction:anassessmentofyieldandregulationofsucrosecontent[J].PlantBiotechnolJ,2010,8:263-276.[27]JACKSONPA.Breedingforimprovedsugarcontentinsugarcane[J].

FieldCropsResearch,2005,92(2):277-290.[28]MANNERSJM,CASURE.Transcriptomeanalysisandfunctionalge-nomicsofsugarcane[J].TropicalPlantBiology,2011,4(1):9-21.[29]TOMKINSJP,YUY,MILLER-SMITHH,etal.Abacterialartificial

chromosomelibraryforsugarcane[J].TheoreticalandAppliedGenet-ics,1999,99(3-4):419-424.[30]SETTAND,METCALFECJ,CRUZGMQ,etal.Buildingthesugar-canegenomeforbiotechnologyandidentifyingevolutionarytrends[J]

.BmcGenomics,2014,15(4):1-18.[31]DAL-BIANCOM,CARNEIROMS,HOTTACT,etal.Sugarcaneim-provement:howfarcanwego[J].CurrentOpinioninBiotechnology,

2012,23(2):265-270.[32]LIYR,YANGLT.Researchanddevelopmentprioritiesforsugarindus-tryofChina:Recentresearchhighlights[J].SugarTech,2015,17

(1):9-12.[33]BEDELLJA,BUDIMANMA,NUNBERGA,etal.Sorghumgenome

sequencingbymethylationfiltration[J].PLoSBiology,2005,3(1):13.[34]AITKENKS,MCNEILMD,BERKMANPJ,etal.Comparativemap-pinginthePoaceaefamilyrevealstranslocationsinthecomplexpoly-ploidgenomeofsugarcane.[J].BmcPlantBiology,2014,14(1):190

-190.

[35]WANGJ,ROEB,MACMILS,etal.Microcollinearitybetweenau-topolyploidsugarcaneanddiploidsorghumgenomes[

J].BMCGenom-ics,2010,11(1):261.[36]LAKSHMANANP,GEIJSKESJ,AITKENKS,etal.Sugarcanebio-technology:thechallengesandopportunities[

J].InVitroCellDevBi-ol-Plant,2005,41:345-363.

[37]LIYR.Theapplicationofbiotechnologyinsugarcane[M].Beijing:

ChinaAgriculturePress,2009.(inChinese).[38]WENGLX,DENGHH,XUJL,etal.Transgenicsugarcaneplantsex-pressinghighlevelsofmodifiedcry1Acprovideeffectivecontrolagainst

stemborersinfieldtrials[J].TransgenicResearch,2011,20(4):759

[[[[[[[[[[[[[[[[70AsianAgriculturalResearch2016

-772.

[39]MANICKAVASAGAMM,GANAPATHIA,ANBAZHAGANVR,etal.

Agrobacterium-mediatedgenetictransformationanddevelopmentofher-bicide-resistantsugarcane(Saccharumspecieshybrids)usingaxillarybuds[J].PlantCellReports,2004,23(3):134-143.[40]HPTTACT,LEMBKECG,DOMINGUESDS,etal.Thebiotechnology

roadmapforsugarcaneimprovement[J].TropicalPlantBiology,2010,3(2):75-87.[41]DEBIBAKASS,ROCHERS,GARSMEURO,etal.Prospectingsugar-caneresistancetosugarcaneyellowleafvirusbygenome-wideassocia-tion[J].Theoretical&AppliedGenetics,2014,127(8):1719-1732.[42]ZHANGM,ZHUOX,WANGJ,etal.Phosphomannoseisomeraseaf-fectsthekeyenzymesofglycolysisandsucrosemetabolismintransgenic

sugarcaneoverexpressingthemanAgene.[J].MolecularBreeding,2015,35(3):1-10.[43]PRIJIPJ,HEMAPRABHAG.Sugarcanespecificdroughtresponsive

candidategenesbelongingtoABAdependentpathwayidentifiedfrom

.SugarbasicspeciesclonesofSaccharumsp.andErianthussp.[J]

Tech,2014,17(2):130-137.[44]MCINTYRECL,GOODEML,CORDEIROG,etal.Characterisation

ofallelesofthesucrosephosphatesynthasegenefamilyinsugarcaneandtheirassociationwithsugar-relatedtraits[J].MolecularBreeding,

2015,35(3):1-14.[45]CHENZL,GUIYY,QINCX,etal.Isolationandexpressionanalysis

ofsucrosesynthasegene(ScSuSy4)fromsugarcane[J].SugarTech,2015,18(2):134–140.[46]CASURE,JARMEYJM,BONNETTGD,etal.Identificationoftran-scriptsassociatedwithcellwallmetabolismanddevelopmentinthestem

ofsugarcanebyaffymetrixgenechipsugarcanegenomearrayexpressionprofiling[J].FunctIntegrGenomics,2007,7(2):153-167.[47]CHENMH,ZHANGBQ,SONGXP,etal.cDNA-SCoTanalysisofdif-ferentiallyexpressedgenesinsugarcaneinducedbyLeifsoniaxylisub-sp,xyli[J].ActaAgronomicaSinica,2013,39(6):1119-1126.

(inChinese).[48]ZHANGJS,GUOCF,WANGBM,etal.Cloningandexpressionanaly-sisofawaterstress-inducedALDHgenefromsugarcane[J].Scientia

AgriculturaSinica,2009,42(8):2676-2685.(inChinese).[49]GILBERTRA,GLYNNNC,COMSTOCKC,etal.Agronomicperform-anceandgeneticcharacterizationofsugarcanetransformedforresistance

tosugarcaneyellowleafvirus[J].FieldCropsResearch,2009,111(1-2):39-46.

[50]ZHUYJ,MCCAFFERTYH,OSTERMANG,etal.Genetictransfor-mationwithuntranslatablecoatproteingeneofsugarcaneyellowleafvi-rusreducesvirustitersinsugarcane[J].TransgenicResearch,2011,

20(3):503-512.[51]MCQUALTERRB,DALEJL,HARDINGRM,etal.ProductionandevaluationoftransgenicsugarcanecontainingaFijidiseasevirus

(FDV)genomesegmentS9-derivedsyntheticresistancegene[J].Aus-tralianJournalofAgriculturalResearch,2004,55(2):139-145.

[52]WEIYW.Studiesongenedifferentialexpressionsregulatedwithethep-honandcloningofethylenereceptorgeneSc-ERSinsugarcane(Sac-charumofficinarumL.)[D].Nanning:GuangxiUniversity,2007.

(inChinese).[53]ALWALAS,KIMBENGCA.MoleculargeneticlinkagemappinginSac-resourcesandachievements[M].CRCPress,Sci-charum:strategies,

encePublishers,2010.[]WUR,MACX,WUSS,etal.Linkagemappingofsex-specificdiffer-ences[J].GeneticalResearch,2002,79(1):85-96.[55]ANDRUS,PANYB,THONGTHAWEES,etal.Geneticanalysisof

thesugarcane(Saccharumspp.)cultivar‘LCP85-384’.I.Linkage

mappingusingAFLP,SSR,andTRAPmarkers[J].Theoreticaland

2011,123(1):77-93.AppliedGenetics,

[56]LIUXL,MAOJ,LUX,etal.Constructionofmoleculargeneticlink-J].ActaAgro-agemapofsugarcanebasedonSSRandAFLPmarkers[

nomicaSinica,2010,36(1):177-183.(inChinese).[57]OLIVEIRAKM,PINTOLR,MARCONITG,etal.Functionalintegrat-edgeneticlinkagemapbasedonEST-markersforasugarcane(Saccha-rumspp.)commercialcross[J].MolecularBreeding,2007,20(3):

1-208.[58]WANGJ,ROEB,MACMILS,etal.Microcollinearitybetweenau-topolyploidsugarcaneanddiploidsorghumgenomes[J].BMCGenom-ics,2010,11:261.[59]MARGARIDOGRA,PASTINAMM,SOUZAAP,etal.Multi-trait

multi-environmentquantitativetraitlocimappingforasugarcanecom-mercialcrossprovidesinsightsontheinheritanceofimportanttraits[J].MolecularBreeding,2015,35(8):1-15.[60]BANERJEEN,SIRAREEA,YADAVS,etal.Marker-traitassociation

studyforsucroseandyieldcontributingtraitsinsugarcane(Saccharumspp.hybrid)[J].Euphytica,2015,205(1):185-201.[61]SANTOSFRC,PINTOLR,CARLINI-GARCIALA,etal.Marker-trait

associationandepistasisforbrownrustresistanceinsugarcane[J].Eu-phytica,2014,203(3):533-7.[62]GOUYM,ROUSSELLEY,CHANEAT,etal.Genomewideassocia-tionmappingofagro-morphologicalanddiseaseresistancetraitsinsug-arcane[J].Euphytica,2015,202(2):269-284.[63]PASTINAMM,PINTOLR,OLINEIRAKM,etal.Molecularmapping

ofcomplextraits[C].HenryRJ,KoleC.Genetics,GenomicsandBreedingofSugarcane.CRCPress,SciencePublishers,2010.[]WEIX,JACKSONPA,HERMANNS,etal.Simultaneouslyaccount-ingforpopulationstructure,genotypebyenvironmentinteraction,and

spatialvariationinmarker–traitassociationsinsugarcane[J].Ge-nome,2010,53(11):973-981.[17]DAPQ,ZHANGKL,YEYH,etal.Restrictingfactorsandcounter-measuresofreforestationprojectinLhasa[J].anScience&Technology,2010(5):13-16.(inChinese).[18]XINGZ.Aquantitativeresearchonthebenefitofecologicalenvironment

oflandscapeplantin[M].Beijing:SocialSciencesAcademicPress(China),2014.(inChinese).

欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁(Frompage65)

[15]LIUZN,PANG,ZHANGHF,etal.Investigationandapplicationre-J].JournalofYunnanAgriculturalsearchonlandscapeplantsinLhasa[

University,2016,31(4):670-680.(inChinese).[16]LIUZN,PANG,ZHANGHF,etal.Researchonlandscapeplantsin

Shannanof[J].JournalofShandongAgriculturalUniversity(Nat-uralScienceEdition),2016,47(7):82-.(inChinese).

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- azee.cn 版权所有 赣ICP备2024042794号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务