onparitymeasurements
OdedZilberberg,BerndBraunecker,andDanielLoss
DepartmentofPhysics,UniversityofBasel,Klingelbergstrasse82,4056Basel,Switzerland
(Dated:February1,2008)Wediscussameasurement-basedimplementationofacontrolled-NOT(CNOT)quantumgate.Suchagatehasrecentlybeendiscussedforfreeelectronqubits.Hereweextendthisschemeforqubitsencodedinproductstatesoftwo(ormore)spins-1/2orinequivalentsystems.Thekeytosuchanextensionistofindafeasiblequbit-paritymeter.Wepresentageneralschemeforreducingthisqubit-paritymetertoalocalspin-paritymeasurementperformedontwospins,onefromeachqubit.TwopossiblerealizationsofamultiparticleCNOTgatearefurtherdiscussed:electronspinsindoublequantumdotsinthesinglet-tripletencoding,andν=5/2Isingnon-Abeliananyonsusingtopologicalquantumcomputationbraidingoperationsandnontopologicalchargemeasurements.
PACSnumbers:03.67.Lx,73.21.La,05.30.Pr,85.35.Be
arXiv:0708.1062v2 [cond-mat.mes-hall] 25 Jan 2008I.INTRODUCTION
Single-quantum-bit(qubit)operationsandatwo-qubitgatethatgeneratesentanglementaresufficientforuniver-salquantumcomputation[1].Onesuchtwo-qubitgateisthecontrolled-NOT(CNOT)whichflipsthestateofatargetqubitifthecontrolqubitisinthelogical|1state.AphysicalimplementationoftheCNOTgatetypicallyrequiresacontroloftheinteractionbetweenthequbits,e.g.forspinqubitssee[2,3,4].However,introducinginteractionsbetweenqubitsinevitablyintro-ducesadditionaldecoherencesourcesandisnotpossi-bleinsomequantumcomputationproposalssuchas,forinstance,inlinear-opticsquantumcomputationduetothefactthatphotonsinteractinanegligibleway.How-ever,Knill,Laflamme,andMilburn(KLM)haveshownthatmeasurementsratherthaninteractionscanprovidethemeanstoimplementaCNOTgateonphotonsus-ingnonunitaryoperations[5].Shortlythereafter,addi-tionalmeasurement-basedapproachesforquantumcom-putationwereproposed[6,7].
TheKLMmodelindeedservedasasteppingstoneforcoherentquantuminformationprocessing,butwasre-strictedtotheunderlyingphysicalsystem,relyingonthebosonicpropertiesofphotons.Attemptstodesignasim-ilarimplementationforfermionicsystemsencounteredsomedifficultiesintheformofano-gotheorem[8,9],whichshowedthatforfermions,single-electronHamil-toniansandsingle-spinmeasurementsaresimulatedeffi-cientlybyclassicalmeans.Thisno-gotheorem,however,wassidesteppedrecentlyinaworkbyBeenakkeretal.[10].Bytakingadvantageoftheadditionalchargedegreeoffreedomofanelectron,atwo-spinparitymeasurementwasproposed.Usingthisparitymeter,ameasurement-basedCNOTgateforfree“flying”electronswasde-signed.Followingthisresult,implementationsofaparitygateforspin[11]andchargequbits[12]havebeenpro-posed.
ThesetupinRef.[10]wasproposedforqubitsen-codedinthespinstatesoffreeelectrons,i.e.theelec-tronspinup(down)isinterpretedasalogical1(0)state.
Manyqubit-encodingschemes,however,encodeaqubitintwostatesfromaHilbertspacelargerthanthetwo-dimensionalspin-1/2Hilbertspace,specifically,fromaproductHilbertspaceoftwo(ormore)two-levelsystems.Anexampleisthesinglet-triplet(S−T0)encoding[13].Forsimplicity,werefertothecomposingparticlesofthiskindofqubitasspins-1/2,yetweemphasizethattheycanhavevariousphysicalorigins.Suchencodingschemesresultfromsystem-dependentconstraints,forinstance,seekingalessnoisyphysicalsystemasinthecaseofelectronspinsindoublequantumdots[13],orduetotopologicalconstraintsinthecaseofν=5/2Ising-typeanyons,wheretwoquasiparticlesformatwo-levelsystemequivalenttoaspin-1/2[14].
Inthispaperwediscussaqubit-paritymeasurement-basedimplementationofaCNOTgateforsuchmultipar-ticlequbits.Theimplementationisadirectextensionoftheschemesproposedin[5,10].Thekeytosuchanex-tensionistofindafeasiblequbit-paritymeasurement.Wepresentageneralschemetoreducethismeasurementtoalocalspin-paritymeasurementofarepresentativespinfromeachqubit.Forconcreteness,wespecificallydiscussqubitsbasedontheS−T0basisandpresentforthiscaseaproofofthelinearityofthemeasurement-basedCNOTgateoperation.Thelinearityproofisre-quiredduetothenonlinearnatureofthemeasurement-basedimplementationofthegateandcanbeusedsimi-larlyforthecaseofRef.[10].WealsoproposeapossiblerealizationofsuchaS−T0CNOTondoublequantumdotsusingarecentlyproposedspin-paritymeter[11].Forν=5/2Ising-typeanyons,ameterequivalenttoaspin-paritymeterinvolvesmeasuringthechargeoffourquasiparticles.Suchmeasurementshavebeenrecentlyproposed[15,16,17,18,19]andfirststepstowardtheirimplementationhavebeenpresented[20,21].InRef.[14]thistypeofparitymeasurementwasinvokedalongsidetopologicalbraidingoperationstoimplementatwo-qubitentanglinggate.Weusethisparitymetertoconstructthemeasurement-basedCNOTgateforthissystem.AcomparisontotheschemeofRef.[14]showsthefollow-ingdifferences:Thepresentschemerequiresonlylocal
braidingbetweentheanyonscomposingaqubitbutalsoadditionalanyonsforanancillaandanadditionalparitymeasurement.TheschemeinRef.[14]isthusmoreeffi-cientinanyonresourcesandusesoneparitymeasurementless,butitrequireslong-rangedanyonbraidingopera-tionsbetweenqubits,whichwillbeexperimentallychal-lenging.
Thepaperisstructuredasfollows:InSec.IIwepresenttheschemeforthequbit-paritymeterusingarepresentativespin-paritymeasurement.TheschemeispresentedfullyfortheS−T0qubitencoding.Wethenex-tendtheresultofRef.[10]andpresentthemeasurement-basedCNOTsetupusingtheS−T0qubit-paritymeter.InSec.IIIwediscusspossibleimplementationsoftheCNOTscheme,focusingontwophysicallyentirelydif-ferentsystems:doublequantumdotsandν=5/2Ising-typeanyons.IntheAppendixweprovethelinearityofthemeasurement-basedCNOTgate.
II.
SCHEMEFORQUBIT-PARITY
MEASUREMENTANDCNOT
Inordertoextendthemeasurement-basedCNOTgateproposedinRef.[10]toamultiparticlequbitencoding,onemustfindawaytomeasurethequbitparityoftwosuchqubits.Weproposeageneralschemeinwhichthequbitsarerotatedto“witness”statessuchthatarep-resentativespinparitymeasurementdemonstratestheirqubitparity.Weillustratethisschemeonaspecifictwo-spinsinglet-tripletqubitencodingwheretwoselectedBellstatesserveasthe√qubit’slogicalstate,i.e.|0=
|ThisT0=2.is(an|↑↓encoding+|↓↑)/
schemeusedforelectronspinsindouble-quantum-dotsetups[13,22,23,24,25,26,27].Weshowthataspin-paritymeasurementissufficientforaS−T0paritymeteranddetailtheCNOTimplemen-tation.
InordertodemonstratetheequivalencebetweenspinparityandS−T0qubitparity,werotatethequbitstatestowitnessstatesoverwhichaspinparitymea-surementwillmakethedistinctionofqubitparity.Animportantbuildingblockinthisschemeisthesingle-qubitHadamardgateH
ˆ.Appliedtothecomputationalbasis1states{|0,|1},ithasthematrixrepresentation2(111−1
),andityieldsfortheS−T0encodingH
ˆ|T0H
ˆ|S==|↑↓|↓↑,.(1)
Therefore,theleftspinintheright-handsideofEq.(1)canserveasawitnessfortheoriginaltwo-spinstate.Forexample,iftheleftspinisinthe|↑state,theoriginalprerotatedstatewasa|T0theleftspinsoftworotated.SHence,−T0thespinparityofqubitparity.IfP
ˆqubitsindicatesthe
sisaspin-paritygate(asusedinRefs.[10,28])weobtainaS−T0qubit-paritygatefromthe
2
a
Hˆ1Hˆ1cPˆsbHˆ2Hˆ2dFigure1:Agatethatusesaspin-paritymeasurementto
measuretheparityofS−T0qubits.ApairofS−T0qubitsentersthegateinarmsaandb.EachofthequbitsistatedbyaHadamardgateH
ˆro-.Thespinparityoftheleftspins(seeEq.(1))fromeachqubitisthenmeasuredintheP
ˆsbox.ThequbitsarerotatedbackbyHadamardgatesandtheparityofthespinsisequivalenttotheparityofthequbits.
operation
P
ˆ=Hˆ1Hˆ2PˆsHˆ1Hˆ2,(2)
whereH
ˆ1,Hˆ2aretheHadamardgatesqubits1and2,andP
ˆoperatingonsmeasuresthespinparitybetweenthetwoleftspinsofqubits1and2.AsketchofthisgateisshowninFig.1.
AsanexamplefortheoperationofP
ˆ,let|ψ=|T01⊗(α|T02+β|S2)beatwo-qubitstate.Once
rotatedbyHadamardgatesthestatebecomes|ψ
˜=|↑↓1⊗(α|↑↓2+β|↓↑2).Measuringthespinparityofthe
leftspinsineachqubitresultsin|ψ˜{1}=|↑↓1⊗|↑↓2
ifevenspinparityismeasured(ps=1)and|ψ˜|↑↓{0}1⊗|↓↑2ifoddspinparityismeasured(ps=0).Ro-=
tatingthequbitsbyHadamardgatesagainresultsintheprojectedqubitstateswithaqubitparityequivalenttothemeasuredspinparity.
ThefactthatHadamardgatesrotatetowitnessstatesandbackinthisS−T0encodingresultsfromthefactthatthecomputationalstatesareasuperpositionofthetwoproductspinstates{|↑↓,|↓↑}withequalampli-tudes.Thus,foran√x-alignedsingle-spinqubitencoding|±=(|↑±|↓)/1/
cinHˆHˆσˆccout
aPˆs,1in=|T0HˆmeasuredaoutPˆs,2tin
σˆttout
Figure2:Measurement-basedCNOTgateforS−T0qubits.
Theboxesrepresentspin-paritymeasurementsoftheleftspins(seeEq.(1))ofeachqubit.ThreeHadamardgatesrotatethequbitsenteringandleavingthefirstbox.Thein-putoftheCNOTgateconsistsofcontrolandtargetqubitsplusanancillawhichispreparedinthe|T0state.Thean-cillaismeasuredattheoutputina|Sor|T0state.Theoutcomeofthismeasurementplusthetwomeasuredspinparitiesdeterminewhichoperatorsσˆc,σˆtonehastoapplyonthecontrolandtargetqubits,respectively,inordertocompletetheCNOToperation:Weapplyonthecontrolqubitσˆc=σˆzifp2=0andσˆc=1ifp2=1.Forthetargetqubit,σˆt=σˆxifp1=1andtheancillaismeasuredinthe|Sstate,orifp1=0andtheancillaismeasuredinthe|T0state.Otherwise,σˆt=1.See[10].
wayforaS−T0CNOTimplementation.Theresult-inggateisshowninFig.2.ThegatecanbeseenasaHadamard-rotatedversionofthegatefromRef.[10]thatoperatesontwo-spinqubitsinsteadoffreeflyingelectronqubits.Inaddition,thegatehasthefollowingadvantagesoverthegatefromRef.[10]:(1)Thean-cillaispreparedinapurecomputationalstateinsteadofasuperpositionofcomputationalstates,and(2)fewerHadamardoperationsarerequired.
Theparityandancillameasurements(seeFig.2)areprojectivenonlinearoperations.Eachmeasurementprojectsthestateontooneoftwopossibleoutcomestates.InFig.3wepresentthe“calculationtree”oftheCNOTgatewherethethreeconsecutivemeasure-mentsleadtoeightpossibleoutcomestates.Withthelasttuningstepofthegate,however,weobtainasingledeterministicresult,i.e.allbrancheshavetheoutcome(uptoaglobalphase),
|ψc⊗|ψt→αγ|T0c|T0t+αδ|T0|SSc|St+
βγc|t+βδ|Sc|T0t,
(3)
where|ψcontrolc=α|T0andc+β|Stargetcand|ψinputstates,t=γ|T0respectively.t+δ|SarethetHenceEq.(3)describestheoperationofaCNOTgateonS−T0qubits.
IntheAppendixwefollowthecalculationtreeinFig.3whenthegateinFig.2isappliedtoanarbitrarytwo-qubitstate.TheresultyieldsEq.(3)andprovesthatthegateisindeedaCNOTgateandthatitsoperationislinear.
3
III.POSSIBLEIMPLEMENTATIONS
Wepresentheretwopossibleimplementationsofthe
CNOTgatefortwotypesofsystemsthathavebeenpro-posedforquantumcomputation.Inthefirstpartwediscusshowitmayberealizedondouble-quantum-dotqubits.Inthesecondpartweconsideranimplemen-tationfornon-AbelianIsing-typeanyonsthathavebeenproposedtoexistaselementaryexcitationsinafractionalquantumHallsystemwithfillingfactorν=5/2.
A.
Doublequantumdots
Sincetheintroductionofelectronspinsinquantumdots(QDs)asaplatformforquantuminformationpro-cessing[2],therehasbeenmuchresearchinthisdirection.SeveralproposalsspecificallyfocusonaS−T0qubiten-codingwheretwoelectronsinneighboringQDsformthe|qubitSandoperations|T0states.aswellPossibleasaCNOTimplementationsgatebasedonofcontrolsingle-ofthedesignandtheinteractionsinthesystemhavebeendiscussedinthelastfewyears[13,22,23,24,25,26,27].InFig.4weshowthatthemeasurement-basedCNOTgatecanberealizedinsuchsystemsaswell.Thespinparitycanbemeasuredusingarecentlyproposedspin-paritymeter[11].Thismeter,however,islocalandcan-notmeasurespinsindistantQDs,i.e.ifwelabeltheelectronsby1,2(firstqubit)and3,4(secondqubit),therequiredwitnessparityofspins1and3cannotbemea-sured.FromEq.(1)wesee,however,thatmeasuringevenparitybetweenspins2and3isthesameasmea-suringoddparitybetweenspins1and3,andviceversa.Uponthisreinterpretation,theCNOTgateremainsun-changed.WiththesuggestedgeometricarrangementofQDsshowninFig.4,itmayfurtherbepossiblethatasinglespin-paritymeter,couplingalternatelytotheleftorrightQDoftheancilla,issufficientfortheoperation.
B.Ising-typeanyons
Topologicalquantumcomputation(TQC)[29,30,31]proposesaschemeinwhichcoherentquantumcomputa-tionisdonebytopologicaloperationsperformedonnon-Abeliananyons.AphysicalsystemthatmayserveasaplatformforTQCisthetwo-dimensionalelectrongasinthefractionalquantumHallregime.Atfillingfractionν=5/2,localizedelementaryexcitations(quasiparticles)areproposedtohavenon-AbeliananyonstatisticsandaredubbedIsinganyons[32,33,34].
Twosuchquasiparticlesformatwo-levelsystemequiv-alenttoaspin-1/2.However,inRef.[14]itisshownthatduetotopologicalsuperselectionrulesthequbitisen-codedintwoproductstates|0=|0,0,|1=|1,1fromtheHilbertspaceformedbyfourquasiparticles.Thus,thissystemformsaHilbertspaceequivalenttothatofa
4
ˆcHˆ1PˆcHˆaHˆ2PˆaMσˆcσˆtz=1|ψ1,1,zp2=1z=0|ψ1,1,1|ψ1,1,0˜1,p,z|ψ2|ψ1,p2,zp2=0|ψ1,0,zp1=1|ψi
˜|ψp1=0|ψ0,1,zp2=1˜0,p,z|ψ2|ψ0,p2,zz=1|ψ1,0,1z=0|ψ1,0,0|ψfz=1|ψ0,1,1z=0|ψ0,1,0p2=0|ψ0,0,zz=1|ψ0,0,1z=0|ψ0,0,0Figure3:Calculationtreeofthemeasurement-basedCNOTgateinFig.2.Thecomputationsplitsinaccordancewiththe
parityandancillameasurements.DuetotheHadamardgaterotations,themeasurementsdonotdestroytheinitialstateandeachpathofthecomputationhasthesameprobabilityofoccurring.Weobtaineightpossibleresultstateswhichwedenoteas|ψp1,p2,z.IntheAppendixwefollowtheexecutionofthegateandshowthattheresultsineachofthecalculationarmsindeedmergeintoasingleresult|ψfwhichisequaltotheresultoftheCNOToperation.
productHilbertspaceoftwospins-1/2[37].Inaddition,itisshowninRef.[14]thatinordertoimplementuniver-salquantumcomputationonthissystem,nontopologicalparity-likemeasurementsarerequired.Suchmeasure-mentsmaybecarriedoutbyaninterferometricdevicerecentlyproposedin[15,16,17,18,19]andfirststepshavebeentakentowarditsimplementation[20,21].Werefertothesereferencesformoredetails.
Themeasurement-basedCNOTschemecanbeimple-mentedoverthissystemaswell.Theparitymeterhereactsdirectlyonthecomputationalstatessothatnoro-tationpriortotheparitymeasurementisrequired.Ifwelabeltheanyonsformingthefirstqubit1,2,3,4andthoseofthesecondqubit5,6,7,8,theparityoftwoqubitscanbemeasuredbyaninterferometerwhichmeasuresthechargeofthefouradjacentanyons3,4,5,6.Thismea-surementisequivalenttothespin-paritymeasurementoftwoneighboringspins,onefromeachqubit,asdis-cussedinSec.IIIA.TherequiredHadamardrotationsbythemeasurement-basedCNOTscheme[10]canbeim-plementedusingtopologicalbraidingoftheIsinganyons[35,36].Ifweconsiderthequbitformedbytheanyons
π
1,2,3,4,thebraidingofanyons1,2resultsinaei
ˆx4σ[14].Since
ˆ=eiiH
π
4
σˆxiπ
e
Figure4:Double-quantum-dotimplementationsetupforthe
measurement-basedCNOTgate.Adotwithanelectroninitisrepresentedbyanemptycirclecontainingafilledcircle.Theancilladotsaresituatednexttoaspin-paritymeter(proposedinRef.[11]).Inordertomeasuretheparityoftheancillaandcontrolqubits,P1,thespinparityoftherightelectronspinofthecontrolandtheleftelectronspinoftheancillaismeasured.Theparityoftheancillaand
targetqubits,P2,ismeasuredbythespinparityoftherightelectronspinoftheancillaandtheleftelectronspinofthetarget.
1234
iHˆ=
TimeFigure5:Hadamardgateusingbraidingofν=5/2Ising
anyons[35,36].Thegateaddsaglobalπ/2phasewhichcanbeignored.
IV.CONCLUSION
Wehavepresentedageneralschemetomeasurethequbitparityoftwomultiparticlequbitsviaarepresen-tativespin-paritymeasurementinsomerotatedstate.Usingthisqubit-paritymeterwehaveextendedthemeasurement-basedCNOTsetupproposedinRef.[10]toadditionalencodingschemes.Asanexample,wedis-cussedtheS−T0qubitencodingcaseindetail.Inthisencoding,asshowninFig.2,therotationsusedbythequbit-paritymeterledtoaslightlysimplerrotatedsetupoftheCNOTgateascomparedto[10].Wealsousedthe
5
ControlAncillaTarget123456789101112Pˆ1TimePˆ2MˆaFigure6:Measurement-basedCNOTgateimplementedon
ν=5/2Isinganyonqubits.Thecontrol,ancilla,andtargetqubitsareshownfromlefttoright,e.g.thecontrolqubitisrepresentedbyanyons1,2,3,4.TherepresentativeparitymeasurementsareshownbytheP
ˆ“spin”-boxesandthean-cillameasurementbytheboxatthebottom.ThebraidingbetweenthemeasurementsrepresentsHadamardrotationsonthequbits.
S−T0setuptoprovideaproofofthelinearityofthegate(seeFig.3),whichisrequiredastheCNOTisim-plementedbynonunitaryoperations.Asanillustration,wepresentedtwopossibleimplementationsoftheCNOTgate.WehaveproposedapossiblesetupfortheS−T0encoding(seeFig.4).Forν=5/2Ising-typeanyons,theCNOTgatecanbeimplementedwithbraidingoperationsandtheparitymeterproposedin[14](seeFig.6).Incontrasttoasimilargatedescribedin[14],thepresentCNOTrequiresonemoreparitymeasurementandtheadditionalancilla.Butallbraidingoperationsremainstrictlylocalandconfinedwithintheindividualqubits.Bothschemeshavetheirstrengthsbutitisyetunknownwhichisamoreefficientrouteforimplementation.
Acknowledgments
WethankW.A.Coish,S.Bravyi,L.Chirolli,D.Stepa-nenko,andD.Zumb¨uhlforusefuldiscussions.FinancialsupportbytheNCCRNanoscienceandtheSwissNSFisacknowledged.
AppendixA:PROOFOFLINEARITY
Toprovethelinearityofthemeasurement-basedCNOTgateshowninFig.2,wefollowthegateexe-cutionthatisportrayedinFig.3whenthecontrolandtargetqubitsaretakeninitiallytobeinarbitrarystates:
|c|t==αγ|0|0++βδ||11==αγ||T0T+β|S(A1)0+δ|S
(A2)Theinitialstateoftheinputqubitsplustheancillais:
|ψi=|c⊗|a⊗|t.
(A3)
Thecalculationsplitsinaccordancewiththeparityandancillameasurements.Weobtaineightoptionalre-sultstateswhichwedenoteas|ψp1,p2,z3.WeprovethattheresultsineachoftheasseencalculationinFig.armsfinallymergeintoasingleresult|ψftotheresultoftheCNOToperation.
whichisequalAtthefirststep,thecontrolispassedthroughaS−T0Hadamardgate,resultingin
|ψ˜=
α2
(|T0βc+|Sc)+2(|T0c−|Sc)⊗|a⊗|t.
(A4)
Thefirstparitymeasurementisperformedonthecon-trolandancillaqubits.Topresenttheresultofthespin-paritymeasurement,wefirstwritethecontrolandancilla
intheproductspinbasis{|↑↓,|↓↑},
|ψ˜=[α|↑↓c+β|↓↑c
]⊗|↑↓a+|↓↑a
2
⊗|t.(A5)Measurementofthespinparityoftheleftspinsofthecontrolandancillaqubitshastwopossibleoutcomes:|ψ˜1,p2,z=[α|↑↓c|↑↓a+β|↓↑c|↓↑a
)]⊗|t,(A6)|ψ
˜0,p2
,z=[α|↑↓c|↓↑a+β|↓↑c|↑↓a
]⊗|t.(A7)
TheancillaandcontrolqubitsarethenrotatedbyHadamardgates:
|ψ1,p2,z=[α|T0c|T0a+β|Sc|Sa]⊗|t,(A8)|ψ0,p2,z=[α|T0c|Sa+β|Sc|T0a]⊗|t.
(A9)
Nowtheancillaandtargetqubitsenteraspin-paritymeasurement.Oncemorewewritetheirstatesintheproductspinbasis:
|ψ1,p2,z=α|T0
c|↑↓a+|↓↑a2+β|Sc
|↑↓a−2
|↓↑a
⊗γ
|↑↓t+|↓↑t
+|↑↓t−|↓↑t,(A10)|ψ,p2,z=2δ2
α|T0|↑↓a−|↓↑a|↑↓a+|↓↑0a
c2+β|Sc
2
⊗γ|↑↓t+|↓↑t2+δ
|↑↓t−2
|↓↑t.(A11)6
Measuringthespinparityoftheleftspinsofthean-cillaandtargetqubitsagainsplitstheresultsetintotwopossiblebranches:|ψαγ
1,1,z=
2[|T0c|↑↓a|↑↓t+|T0c|↓↑a|↓↑t]+αδ
2[|T0c|↑↓a|↑↓t−|T0c|↓↑a|↓↑t]+βγ
2[|Sc|↑↓a|↑↓t−|Sc|↓↑a|↓↑t]+βδ
2
[|Sc|↑↓a|↑↓t+|Sc|↓↑a|↓↑t],(A12)|ψαγ
1,0,z=
2[|T0c|↑↓a|↓↑t+|T0c|↓↑a|↑↓t]−αδ
2[|T0c|↑↓a|↓↑t−|T0c|↓↑a|↑↓t]+βγ
2[|Sc|↑↓a|↓↑t−|Sc|↓↑a|↑↓t]−βδ
2
[|Sc|↑↓a|↓↑t+|Sc|↓↑a|↑↓t],(A13)|ψαγ
0,1,z=
2[|T0c|↑↓a|↑↓t−|T0c|↓↑a|↓↑t]+αδ
2[|T0c|↑↓a|↑↓t+|T0c|↓↑a|↓↑t]+βγ
2[|Sc|↑↓a|↑↓t+|Sc|↓↑a|↓↑t]+βδ
2
[|Sc|↑↓a|↑↓t−|Sc|↓↑a|↓↑t],(A14)|ψαγ
0,0,z=
2[|T0c|↑↓a|↓↑t−|T0c|↓↑a|↑↓t]−αδ
2[|T0c|↑↓a|↓↑t+|T0c|↓↑a|↑↓t]+βγ
2[|Sc|↑↓a|↓↑t+|Sc|↓↑a|↑↓t]−βδ
2
[|Sc|↑↓a|↓↑t−|Sc|↓↑a|↑↓t].(A15)Theancillaandtargetqubitscanberewritteninthe
S−T0basisusingthefollowingrelations:
|↑↓=
1
2[|T0+|S]|↓↑=1
2[|T0−|S]
(A16)
SubstitutingEq.(A16)intoEqs.(A12)-(A15)and
7
rewritingtheexpressionsweobtain:
αγ
[|T0c|T0a|T0t+|T0c|Sa|St]+|ψ1,1,z=2αδ
[|T0c|Sa|T0t+|T0c|T0a|St]+2βγ
[|Sc|Sa|T0t+|Sc|T0a|St]+2βδ
[|Sc|T0a|T0t+|Sc|Sa|St],(A17)2|ψ1,0,z=
αγ
[|T0c|T0a|T0t−|T0c|Sa|St]+2αδ
[|T0c|T0a|St−|T0c|Sa|T0t]+2βγ
[|Sc|Sa|T0t−|Sc|T0a|St]+2βδ
[|Sc|Sa|St−|Sc|T0a|T0t],(A18)2
|ψ1,1,0=αγ|T0c|T0t+αδ|T0c|St+
βγ|Sc|St+βδ|Sc|T0t,
(A22)
|ψ1,0,1=−αγ|T0c|St−αδ|T0c|T0t+
βγ|Sc|T0t+βδ|Sc|St,(A23)|ψ1,0,0=αγ|T0c|T0t+αδ|T0c|St−βγ|Sc|St−βδ|Sc|T0t,
|ψ0,1,1=αγ|T0c|T0t+αδ|T0c|St+
βγ|Sc|St+βδ|Sc|T0t,|ψ0,1,0=αγ|T0c|St+αδ|T0c|T0t+
βγ|Sc|T0t+βδ|Sc|St,|ψ0,0,1=αγ|T0c|T0t+αδ|T0c|St−
βγ|Sc|St−βδ|Sc|T0t,
(A24)(A25)
(A26)
αγ
|ψ0,1,z=[|T0c|Sa|T0t+|T0c|T0a|St]+
2αδ
[|T0c|T0a|T0t+|T0c|Sa|St]+2βγ
[|Sc|T0a|T0t+|Sc|Sa|St]+2βδ
[|Sc|Sa|T0t+|Sc|T0a|St],(A19)2|ψ0,0,z=
αγ
[|T0c|Sa|T0t−|T0c|T0a|St]+2αδ
[|T0c|Sa|St−|T0c|T0a|T0t]+2βγ
[|Sc|T0a|T0t−|Sc|Sa|St]+2βδ
[|Sc|T0a|St−|Sc|Sa|T0t].(A20)2
(A27)
|ψ0,0,0=−αγ|T0c|St−αδ|T0c|T0t+
βγ|Sc|T0t+βδ|Sc|St.(A28)
Applyingthegatesσˆc,σˆtonthecontrolandtarget
qubitsinaccordancewiththeresultsoftheparityandancillameasurements(asshowninFig.2)givesthesamestateinalleightcomputationbranches(uptoaglobalphase):
|ψf=αγ|T0c|T0t+αδ|T0c|St+
βγ|Sc|St+βδ|Sc|T0t.
(A29)
UnderthequbitencodingthisstateisindeedtheresultoftheCNOTgate:
|ψf=αγ|0c|0t+αδ|0c|1t+
βγ|1c|1t+βδ|1c|0t.
Thisprovesthelinearityofthegate.
Measuringtheancillainasingletortripletresultsinthefinaleightstates:
|ψ1,1,1=αγ|T0c|St+αδ|T0c|T0t+
βγ|Sc|T0t+βδ|Sc|St,
(A21)
(A30)
[1]A.Barenco,C.H.Bennett,R.Cleve,D.P.DiVincenzo,
N.Margolus,P.Shor,T.Sleator,J.A.Smolin,andH.Weinfurter,Phys.Rev.A52,3457(1995).
[2]D.LossandD.P.DiVincenzo,Phys.Rev.A57,120
(1998).
[3]G.Burkard,D.Loss,andD.P.DiVincenzo,Phys.Rev.B59,2070(1999).
[4]D.Klauser,W.A.Coish,andD.Loss,Phys.Rev.B73,
205302(2006).
[5]E.Knill,R.Laflamme,andG.J.Milburn,Nature409,
46(2001).
[6]M.A.Nielsen,Phys.Lett.308,96(2003).
[7]D.W.Leung,Int.J.Quant.Inf.2,33(2004).
[8]B.M.TerhalandD.P.DiVincenzo,Phys.Rev.A65,
032325(2002).
[9]E.Knill,arXiv:quant-ph/0108033.
[10]C.W.J.Beenakker,D.P.DiVincenzo,C.Emary,and
M.Kindermann,Phys.Rev.Lett.93,020501(2004).[11]H.A.EngelandD.Loss,Science309,586(2005).
[12]B.Trauzettel,A.N.Jordan,C.W.J.Beenakker,and
M.Buttiker,Phys.Rev.B73,235331(2006).[13]J.Levy,Phys.Rev.Lett.89,147902(2002).[14]S.Bravyi,Phys.Rev.A73,042313(2006).
[15]E.Fradkin,C.Nayak,A.Tsvelik,andF.Wilczek,Nucl.
Phys.B516,704(1998).
[16]P.Bonderson,A.Kitaev,andK.Shtengel,Phys.Rev.
Lett.96,016803(2006).
[17]A.SternandB.I.Halperin,Phys.Rev.Lett.96,016802
(2006).
[18]D.E.FeldmanandA.Kitaev,Phys.Rev.Lett.97,
186803(2006).
[19]D.E.Feldman,Y.Gefen,A.Kitaev,K.T.Law,and
A.Stern,Phys.Rev.B76,085333(2007).
[20]Y.Ji,Y.Chung,D.Sprinzak,M.Heiblum,D.Mahalu,
andH.Shtrikman,Nature422,415(2003).[21]J.B.Miller,I.P.Radu,D.M.Zumb¨uhl,E.M.Levenson-Falk,M.A.Kastner,C.M.Marcus,L.N.Pfeiffer,and
K.W.West,Nat.Phys.3,561(2007).
[22]L.A.WuandD.A.Lidar,Phys.Rev.A65,042318
(2002).
[23]J.R.Petta,A.C.Johnson,J.M.Taylor,E.A.Laird,
8
A.Yacoby,M.D.Lukin,C.M.Marcus,M.P.Hanson,andA.C.Gossard,Science309,2180(2005).
[24]W.A.CoishandD.Loss,Phys.Rev.B72,125337(2005).
[25]J.M.Taylor,H.-A.Engel,W.D¨ur,A.Yacoby,C.M.Marcus,P.Zoller,andM.D.Lukin,NaturePhys.1,177(2005).
[26]R.HansonandG.Burkard,Phys.Rev.Lett.98,050502(2007).
[27]D.StepanenkoandG.Burkard,Phys.Rev.B75,085324(2007).
[28]R.Ionicioiu,Phys.Rev.A75,032339(2007).[29]A.Kitaev,Ann.Phys.303,2(2003).
[30]M.H.Freedman,A.Kitaev,M.J.Larsen,andZ.Wang,Bull.Amer.Math.Soc.40,31(2002).
[31]E.Dennis,A.Kitaev,A.Landahl,andJ.Preskill,Math.Phys.43,4452(2002).
[32]G.MooreandN.Read,Nucl.Phys.B360,362(1991).[33]C.NayakandF.Wilczek,Nucl.Phys.B479,529(1996).[34]S.DasSarma,M.Freedman,andC.Nayak,Phys.Rev.Lett.94,166802(2005).
[35]L.S.Georgiev,Phys.Rev.B74,235112(2006).
[36]C.Zhang,S.Tewari,andS.DasSarma,Phys.Rev.Lett.99,220502(2007).
[37]
Analternativequbitencodingschemetothefour-quasiparticlequbitistoencodethequbitinthreequasi-particles,forwhichaCNOTgatehasbeenproposedin[35].
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- azee.cn 版权所有 赣ICP备2024042794号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务