VincentA.Cicirello1andStephenF.Smith2
DepartmentofComputerScience,CollegeofEngineering,DrexelUniversity,3141ChestnutStreet,Philadelphia,PA19104
cicirello@cs.drexel.edu
2
TheRoboticsInstitute,CarnegieMellonUniversity,5000ForbesAvenue,Pittsburgh,PA15213
sfs@cs.cmu.edu
1
Abstract.Thesuccessofstochasticalgorithmsisoftenduetotheirabilitytoeffectivelyamplifytheperformanceofsearchheuristics.Thisiscertainlythecasewithstochasticsamplingalgorithmssuchasheuristic-biasedstochasticsam-pling(HBSS)andvalue-biasedstochasticsampling(VBSS),whereinaheuristicisusedtobiasastochasticpolicyforchoosingamongalternativebranchesinthesearchtree.OnecomplicationingettingthemostoutofalgorithmslikeHBSSandVBSSinagivenproblemdomainistheneedtoidentifythemosteffectivesearchheuristic.Inmanydomains,therelativeperformanceofvariousheuristicstendstovaryacrossdifferentprobleminstancesandnosingleheuristicdomi-nates.Insuchcases,thechoiceofanygivenheuristicwillbelimitinganditwouldbeadvantageoustogainthecollectivepowerofseveralheuristics.Towardthisgoal,thispaperdescribesaframeworkforintegratingmultipleheuristicswithinastochasticsamplingsearchalgorithm.Initsessence,theframeworkusesonline-generatedstatisticalmodelsofthesearchperformanceofdifferentbaseheuristicstoselectwhichtoemployoneachsubsequentiterationofthesearch.Toestimatethesolutionqualitydistributionresultingfromrepeatedapplicationofastrongheuristicwithinastochasticsearch,weproposetheuseofmodelsfromextremevaluetheory(EVT).OurEVT-motivatedapproachisvalidatedontheNP-Hardproblemofresource-constrainedprojectschedulingwithtimewin-dows(RCPSP/max).UsingVBSSasabasestochasticsamplingalgorithm,theintegrateduseofasetofprojectschedulingheuristicsisshowntobecompeti-tivewiththecurrentbestknownheuristicalgorithmforRCPSP/maxandinsomecasesevenimprovesuponbestknownsolutionstodifficultbenchmarkinstances.
1Introduction
ThesuccessofstochasticsamplingalgorithmssuchasHeuristic-BiasedStochasticSampling(HBSS)[1]andValue-BiasedStochasticSampling[2,3]stemsfromtheirabilitytoamplifytheperformanceofsearchheuristics.Theessentialideaunderlyingthesealgorithmsistousetheheuristic’svaluationofvariouschoicesatagivensearchnodetobiasastochasticdecision,and,indoingso,torandomlyperturbtheheuristic’sprescribed(deterministic)trajectorythroughthesearchspace.InthecaseofHBSS,arank-orderingofpossiblechoicesisusedasheuristicbias;inVBSS,alternatively,the
actualheuristicvalueattributedtoeachchoiceisused.Thisstochasticchoiceprocessenablesgenerationofdifferentsolutionsonsuccessiveiterations(orrestarts),andef-fectivelyresultsinabroadersearchinthe“neighborhood”definedbythedeterministicheuristic.HBSShasbeenshowntosignificantlyimprovetheperformanceofaheuris-ticforschedulingtelescopeobservations[1].VBSShasshownsimilarabilitytoim-provesearchperformanceinweighted-tardinessscheduling[2,3],resource-constrainedprojectscheduling[3],andinamulti-roverexplorationdomain[4].
ThedrawbacktostochasticsamplingalgorithmssuchasHBSSandVBSSisthattheyrequireidentificationofanappropriatedomainheuristic,andsearchperformanceisultimatelytiedtothepoweroftheheuristicthatisselected.Heuristics,however,arenotinfallible,andinmostdomainstheredoesnotexistasingledominatingheuristic.Insteaddifferentheuristicstendtoperformbetterorworseondifferentproblemin-stances.Insuchcases,thechoiceofanysingleheuristicwillultimatelybelimitinganditwouldbeadvantageoustogainthecollectivepowerofseveralheuristics.Theideaofexploitingacollectionofheuristicstoboostoverallperformancehasbeenexploredinothersearchcontexts.AllenandMintonusesecondaryperformancecharacteristicsasindicatorsforwhichheuristicalgorithmisperformingmoreeffectivelyforagivenCSPinstance[5].Othershavebeenapplyingrelativelysimplelearningalgorithmstotheproblemofselectingfromamongalternativelocalsearchoperators[6,7].Workonalgorithmportfolios[8]andtherelatedA-Teamsframework[9]takeamoreaggressiveapproach,executingseveraldifferentheuristicsearchalgorithmsinparallel.
Inthispaper,weconsidertheproblemofintegratingmultiplesearchheuristicswithinastochasticsamplingalgorithm.Ratherthancarefullycustomizingavarianttouseacompositeheuristic,theapproachtakenhereistoinsteaddesignasearchcon-trolframeworkcapableofacceptingseveralsearchheuristicsandself-customizingahybridalgorithmonaperprobleminstancebasis.Generallyspeaking,ourapproachviewseachsolutionconstructedbythestochasticsamplingalgorithmasasampleoftheexpectedsolutionqualityofthebaseheuristic.Overmultiplerestartsonagivenprobleminstance,weconstructsolutionqualitydistributionsforeachheuristic,andusethisinformationtobiastheselectionofheuristiconsubsequentiterations.Gomesetal.’sanalysisanduseofruntimedistributionshasledtomuchsuccessinconstraintsatisfactiondomains[10].Inasimilarway,ahypothesisofthispaperisthatsolutionqualitydistributionscanprovideananalagousbasisforunderstandingandenhancingtheperformanceofstochasticsamplingproceduresinsolvingoptimizationproblems.Assuggestedabove,thesearchcontrolframeworkdevelopedinthispaperusesonline-generatedstatisticalmodelsofsearchperformancetoeffectivelycombinemul-tiplesearchheuristics.Considerthatastochasticsearchalgorithmsamplesasolutionspace,guidedbyastrongdomainheuristic.Ourconjectureisthatthesolutionsfoundbythisalgorithmonindividualiterationsaregenerally“good”(withrespecttotheover-allsolutionspace)andthatthese“good”solutionsarerareevents.Thisleadsustothebodyofworkonextremevaluetheory(EVT).EVTisthestatisticalstudyofrareoruncommonevents,ratherthantheusual(e.g.,studyofwhathappensattheextremeofadistributioninthetail).WithourconjecturestatedandwithrespecttoEVT,wecanviewthedistributionofsolutionqualitiesfoundbyastochasticheuristicsearchalgo-rithmasasortofsnapshotofthetailofthedistributionofsolutionqualitiesoftheover-
allsearchspace.WespecificallyemployadistributioncalledtheGeneralizedExtremeValue(GEV)distributiontomodelthesolutionqualitiesgivenbyindividualiterationsofthesearchalgorithm.WeimplementthisEVT-motivatedapproachintwoways:1)usingawell-known,butnumericallyintensivecomputationofamaximumlikelihoodestimationoftheGEV;and2)usingkerneldensityestimationtunedassumingaGEV.
UsingVBSSasabasestochasticsamplingprocedure,wevalidatethisEVT-motivatedheuristicperformancemodelingandheuristicselectionpolicyontheNP-Hardproblemofresource-constrainedprojectschedulingwithtimewindows(RCPSP/max).AsabaselineandtovalidateourEVTassumptions,wecomparetheperformanceoftheapproachwithonethatmakesthenaiveassumptionthatthesolutionqualitiesarenormallydistributed.Wefurtherbenchmarktheapproachagainstseveralwell-knownheuristicalgorithms,findingthatourEVT-motivatedalgorithmiscompeti-tivewiththecurrentbestknownheuristicalgorithmforRCPSP/max;andinsomecasesevenimprovesuponcurrentbestknownsolutionstodifficultprobleminstances.
2ModelingaSolutionQualityDistribution
2.1ExtremeValueTheoryMotivation
Considerthatthesolutionstoahardcombinatorialoptimizationproblemcomputedoneachiterationofastochasticsamplingalgorithmareinfactattheextremewhentheoverallsolution-spaceisconsidered.Ifoneweretosamplesolutionsuniformlyatran-dom,theprobabilityisverylowthatanyofthesolutionsgeneratedbyastochasticsearchthatisguidedbyastrongheuristicwouldbefound.Inotherwords,goodsolu-tionstoanygivenprobleminstancefromtheclassofproblemsofgreatestinteresttousare,inasense,rarephenomenawithinthespaceoffeasiblesolutions.
Forexample,usingBresina’sconceptofaqualitydensityfunction(QDF)[11],weexaminedseveralprobleminstancesofaweightedtardinessschedulingproblem.AQDFisthedistributionofsolutionqualitiesthatonewouldobtainbysamplinguni-formlyfromthespaceofpossiblesolutionstoaprobleminstance.Foreasyprobleminstancesfromourproblemset,wefoundthattheoptimalsolutionwasonaverageover6.4standarddeviationsbetterthantheaveragefeasiblesolutiontotheproblem;thevalueoftheaveragesolutiongivenbyastochasticsamplerguidedbyastrongdomainheuristicwasalsoover6.4standarddeviationsbetterthantheaveragesolutionintheproblemspace[3].Further,forhardprobleminstances,wefoundthattheaveragesolu-tiongivenbyasingleiterationofthestochasticsearchwasover9.1standarddeviationsbetterthantheaveragerandomsolution;thebestknownsolutionwasonaverage9.4standarddeviationsbetterthantheaveragesolutionintheproblemspace[3].2.2GeneralizedExtremeValueDistribution
Withthisnoted,weturntothefieldofextremevaluetheory,whichdealswith“tech-niquesandmodelsfordescribingtheunusualratherthantheusual”[12].Consideranextremevalueanalogtothecentrallimittheory.LetMn=max{X1,...,Xn}whereX1,...,Xnisasequenceofindependentrandomvariableshavingacommondistribu-tionfunctionF.Forexample,perhapstheXiarethemeantemperaturesforeachofthe
365daysintheyear,thenMnwouldcorrespondtotheannualmaximumtemperature.TomodelMn,extremevaluetheoriststurntotheextremaltypestheorem[12]:Theorem1.Ifthereexistssequencesofconstants{an>0}and{bn}suchthatP((Mn−bn)/an≤z)→G(z)asn→∞,whereGisanon-degeneratedistributionfunction,thenGbelongstooneofthefollowingfamilies:
b
I:G(z)=exp(−exp(−(z−a))),−∞ II:G(z)=exp(−(z−)ifz>bandotherwiseG(z)=0a) z−bα III:G(z)=exp((a))ifz Theseareknownastheextremevaluedistributions,typesI(Gumbel),II(Fr´echet),andIII(Weibull).ThetypesIIandIIIdistributionsareheavy-tailed–oneboundedontheleftandtheotherontheright.TheGumbeldistributionismedium-tailedandun-bounded.Thesedistributionsarecommonlyreformulatedintothegeneralizationknownasthegeneralizedextremevaluedistribution(GEV): G(z)=exp(−(1+ξ( z−b−1/ξ )))a (1) b where{z:1+ξ(z−a)>0},−∞0,and−∞<ξ<∞.Thecasewhereξ=0istreatedasthelimitofG(z)asξapproaches0toarriveattheGumbeldistribution.UndertheassumptionofTheorem1,P((Mn−bn)/an≤z)≈G(z)forlargeenoughnwhichisequivalenttoP(Mn≤z)≈G((z−bn)/an)=G∗(z)whereG∗(z)issomeothermemberofthegeneralizedextremevaluedistributionfamily. Themainpointhereisthattomodelthedistributionofthemaximumelementofafixed-lengthsequence(orblock)ofidenticallydistributedrandomvariables(i.e.,thedistributionof“blockmaxima”),oneneedssimplytoturntotheGEVdistributionre-gardlessoftheunderlyingdistributionoftheindividualelementsofthesequence. 2.3ModelingSolutionQualityviatheGEV Theorem1onlyexplicitlyappliestomodelingthedistributionof“blockmaxima”.Theassumptionwenowmakeisthatthequalitydistributionforastochasticsamplingal-gorithmusingastrongheuristictosamplefromthesolutionspacebehavesthesameas(oratleastsimilarto)thedistributionof“blockmaxima”andthusitscumulativedistributionfunctioncanbemodeledbytheGEVdistribution. TousetheGEVasourmodel,wemustfirstrecognizethatwehavebeenassumingthroughoutthatourobjectivefunctionmustbeminimizedsoweneeda“blockminima” =min{X1,...,Xn}.WewantP(Mn max{−X1,...,−Xn}.Therefore,Mn=−MnandP(Mn behavesaccordingtoaGEVdistribution,theprobabilityPioffindingabettersolutionthanthebestfoundsofar(B)usingheuristicicanbedefinedas: Pi=1−Gi(−B)=1−exp(−(1+ξi( −B−bi−1/ξi )))ai (2) wherethebi,ai,andξiareestimatedfromthenegativeofthesamplevalues.Tocom-putetheseparameters,weuseHosking’smaximum-likelihoodestimatoroftheGEVparameters[13].InestimatingtheGEVparameters,Hosking’salgorithmiscalledmul-tipletimes,ifnecessary.Thefirstcallusesinitialestimatesoftheparametersasrecom-mendedbyHosking(setassumingaGumbeldistribution).IfHosking’salgorithmfailstoconverge,thenafixednumberofadditionalcallsaremadewithrandominitialval-uesoftheparameters.Ifconvergencestillfails,weusethevaluesoftheparametersasestimatedbyassumingatypeIextremevaluedistribution(theGumbeldistribution).32.4ModelingSolutionQualityusingKernelDensityEstimation AsecondpossibilityforestimatingthequalitydistributionisKernelDensityEstimation(see[14]).Akerneldensityestimatormakeslittle,ifany,assumptionsregardingtheun-derlyingdistributionitmodels.Itprovidesanon-parametricframeworkforestimatingarbitraryprobabilitydensities.Theadvantageofthisapproachisthatitshouldbepos-sibletomorecloselyestimatearbitrarysolutionqualitydistributions.Kerneldensityestimationtakeslocalaveragestoestimateadensityfunctionbyplacingsmoothedoutquantitiesofmassateachdatapoint.Thekerneldensityestimatorisdefinedas: x−Xi ˆ(x)=1).K(f nhi=1h n (3) K(·)isakernelfunctionandhiscalledthebandwidth(alsosometimescalledthescale parameterorspreadingcoefficient).TheXiarethensamplevalues(objectivefunctionvalueofthesolutionsgeneratedbytheniterationsofthestochasticsearchalgorithm). ThekernelfunctionwehavechosenistheEpanechnikovkernel[15]: √3x2 √K(x)=45(1−5)for|x|<5andotherwise0.(4)Epanechnikovshowedthatthisistheriskoptimalkernel,butestimatesusingother smoothkernelsareusuallynumericallyindistinguishable.Thus,theformoftheker-nelcanbechosentobestaddresscomputationalefficiencyconcerns.Inourcase,theEpanechnikovkernelisaclearwinnercomputationallyforthefollowingreasons:–Wearemostinterestedinultimatelycomputingtheprobabilityoffindingabettersolutionthanthebestfoundsofar.Thiskernelfunctionallowsustoeasilycomputethecumulativeprobabilitydistributionforarbitrarysolutionqualitydistributions.√ –Duetothecondition|x|<5,onlyalimitednumberofsamplevaluesmustbeconsidered,reducingthecomputationaloverhead. Althoughthechoiceofkernelfunctionisnotcriticalintermsofnumericalre-sults,thechoiceofbandwidthcanbeverycrucial.Epanechnikovthatthe∞showedL1/5 optimalchoiceofbandwidthish=(nM),whereL=−∞K(x)2dxwhere ∞ M=−∞(f(x))2dx,andwherenisthenumberofsamples[15].Unfortunately,this 3 Itshouldbenotedthatthisfallbackconditionappearstorarelyoccur,ifever,inourexperi-ments. computationdependsonknowingthetruedistribution(Mdependsonf(x)).Weas-sumethattheunderlyingdistributionistheGumbeldistribution.ThereasoningbehindthisassumptionfollowsourEVTmotivation.GiventheGumbeldistributionassump-1 tion,M=4a5,whereaisthescaleparameteroftheGumbel.Notethatthestandard√ πaσ6√deviationoftheGumbeldistributionisσ=6[16].Fromthis,wehavea=π.WecannowwriteMintermsofthesamplestandarddeviation:M=usingtheEpanechnikovkernelsoL= 3√.55 Thisresultsinavalueofhcomputedas: 5 √π5.46σ5 Weare h=0.79sn−1/5wheres=min{σ,Q/1.34}andwhereQistheinterquartilerange. Weareinterestedinthecumulativedistributionfunctionforthepurposeofcomput-ingtheprobabilityoffindingabettersolutionthanthebestfoundsofar.Thiscanbeobtainedfromintegratingthekerneldensityestimator.Thus,wehavetheprobabilityPioffindingasolutionbetterthanthebestfoundsofar,B,givenheuristici:4 Bni x−Si,j1 Pi=K()dx.(5) hi0nihij=1GivenourchoiceoftheEpanechnikovkernel,thisevaluatesto: Pi= 3 √4nihi5 j,| B−Si,j hi √|<5 1B32 −B2Si,j+BSi,j((B−2())− 5hi3 √3 √1(Si,j−hi5) (Si,j−hi5−2(− 5hi3√2√2 (Si,j−hi5)Si,j+(Si,j−hi5)Si,j))) (6) Itshouldbenoted,thatifwemaintainthesamplesinsortedorder,thengiventhat Bmustbelessthanorequaltothesmallestvalue√inthislist5,wecomputethissum B−S untilwereachasampleSi,jsuchthat|hii,j|≥5.Onceasampleforwhichthisconditionholdsisreachedinthelist,thesummationcanend.Actually,ratherthaninasortedlist,wemaintainthesamplesinasortedhistogram,maintainingcountsofthenumberofsampleswithgivendiscretevalues.2.5SelectingaSearchHeuristic Amethodisneededforbalancingthetradeoffbetweenexploitingthecurrentestimatesofthesolutionqualitydistributionsgivenbythealgorithm’schoicesandtheneedforexplorationtoimprovetheseestimates.Thek-armedbanditfocusesonoptimizingtheexpectedtotalsumofrewardsfromsamplingfromamultiarmedslotmachine.Atanypointduringaniterativestochasticsamplingsearch,thereisacurrentbestfoundso-lution.Futureiterationshavetheobjectiveoffindingasolutionthatisbetterthanthe 45 Thisassumesaminimizationproblemwithlowerboundof0ontheobjectivefunction.Assumingweareminimizinganobjectivefunction. currentbest.Fromthisperspective,abetteranalogythanthek-armedbanditwouldbetoconsideramultiarmedslotmachineinwhichtheobjectiveistosamplethearmstooptimizetheexpectedbestsinglesample–whatwehavetermedthe“Maxk-ArmedBanditProblem”[3].Elsewhere,weshowedthattheoptimalsamplingstrategysam-plestheobservedbestarmataratethatincreasesapproximatelydoubleexponentiallyrelativetotheotherarms[3]. Specifictoourproblem,thismeanssamplingwiththeobservedbestheuristicwithfrequencyincreasingdoubleexponentiallyrelativetothenumberofsamplesgiventheotherheuristics.Consider,astheexplorationstrategy,Boltzmannexplorationascom-monlyusedinreinforcementlearning[17]andsimulatedannealing[18].WithaBoltz-mannexplorationstrategy,wewouldchoosetouseheuristichiwithprobabilityP(hi): exp((PiFi)/T) P(hi)=H, exp((PF)/T)jjj=1 (7) wherePiistheprobabilityoffindingasolutionbetterthanthebestfoundsofar,where FiistheratioofthenumberoffeasiblesolutionsusedinestimatingPitothetotalnumberofsampleswithi,wherethereareHheuristicstochoosefrom,andwhereTisatemperatureparameter.Togetthedoubleexponentialsamplingincrease,weneedtodecreaseTexponentially.Forexample,letT=exp(−N)whereNisthenumberofsamplesalreadytakenandsamplehiwithprobability: P(hi)=H exp((PiFi)/exp(−N)) j=1exp((PjFj)/exp(−N)) .(8) 3ExperimentalDesign