ASPConferenceSeries,Vol.**VOLUME**,**YEAROFPUBLICATION****NAMESOFEDITORS**
ThePlaceofRecurrentNovaeamongtheSymbioticStars
J.Mikolajewska
N.CopernicusAstronomicalCenter,Bartycka18,00-716Warsaw,Poland
Abstract.Theobservationalpropertiesofrecurrentnovaeindicatethattheycanbedividedintotwosubclasses:systemswithadwarfandaredgiantsec-ondary,respectively.Thesecondtype–whichincludesRSOph–bearsmanysimilaritiestosymbioticstars.
1.Introduction
Symbioticstarsareinteractingbinariesinwhichanevolvedcoolgiant–eitheranormalMgiantinS-typesoraMiravariableembeddedinanopticallythickdustshellinD-types–transfersmaterialtoahotwhitedwarf.InsomecasestheMgiantisreplacedbyaG-Kgiant–thesearecalledyellowsymbioticstars,andthewhitedwarfisreplacedbyaneutronstars–thesearealsoclassifiedaslowmassX-raybinaries(e.g.V2116Oph/GX1+4).Thepresenceofanevolvedgiantisessentialtoformasymbioticbinary,andsotheremustbeenoughspaceinthesystemtoaccomodatesuchabigstar.Thus,symbioticstarshavethelongestorbitalperiodsandthelargestcomponentseparationsamongtheinteractingbinaries,andtheyareaveryattractivelaboratoryforstudyingvariousaspectsofinteractionsandstellarevolutioninbinarysystems(e.g.Corradi,Mikolajewska&Mahoney2003).
Thesubclassofrecurrentnovaewithgiantsecondaries–RSOph,TCrB,V30SgrandV745Sco–havethesamecompositionasthesymbioticbinaries,andsotheysharemanyphysicalcharacteristicswiththesesystems.Theaimsofthispaperaretopresentthestate-of-the-artinunderstandingofsymbioticbinaries,andtodiscusstheplaceofthesesymbioticrecurrentnovae(SyRNe)amongthesesystems.Inadditiontotheorbitalandstellarparameters,themechanismsofmasslossandaccretionaswellasthelinkbetweentheSyRNeandtheZAnd-typesystemswillbediscussed.2.
Orbitalparameters
Thedistributionsoftheorbitalperiods,massratiosandthestellarcomponentmassesforsymbioticstarshavebeenrecentlydiscussedbyMikolajewska(2007).Sincethen,orbitalperiodhavebeenfoundforanother5galacticsystems,andspectroscopicorbitshavebeenderivedfor3systems(Fekeletal.2007;Gro-madzkietal.2007)whichincreasedthenumberofsystemswithknownorbitalperiodsandspectroscopicorbitsderivedfromthecoolgiantabsorptionfeaturesto70and32objects,respectively.TheupdateddistributionsareshowninFig.1,
1
2
2421181512963024211815129630
100
1000
630
01234567
630
0.40.60.811.2
630
0.81.62.43.2
Figure1.Orbitalparametersofsymbioticstars.Theshadedregionsde-notedifferentpopulations:theMCs,yellow,andsymbioticrecurrentnovae,respectively.
3
andtheydonotaffectthepreviousconclusions.Inparticular,thereisnosys-tematicdifferencebetweenthesymbioticsystemsinthegalacticdiscandthoseinthebuldge,whereastheyellowsymbioticstars(lowmetallicity,halosystemswithaKgiantdonor)maysplitintotwopopulations,withPorb∼200–600days,and≥900days,respectively.ThesymbioticsystemsintheMagellanicCloudshavePorb≥900dayswhichisconsistentwiththelongerperiodtailofthegalacticS-typesystems.Thecoolgiantsmassespeakaround6M⊙,andthewhitedwarfmasses–around0.5M⊙,respectively.MoredetaileddiscussionoftheorbitalparametersisincludedinMikolajewska(2003;2007).
Theorbitalparametersareavailableonlyfor2SyRNe:TCrBandRSOph(e.g.Belczynski&Mikolajewska1998;Brandietal.2008).Bothhaveorbitalperiods–227and453days,respectively–consistentwiththeshorterperiodtailofgalacticS-typesystems.Thereare,however,significantdifferencesbetweentheSyRNeandtheothersymbioticstars.InbothRSOphandTCrB,thecoolgiantisthelessmassivecomponent,withmass,Mg∼0.6–0.8M⊙,lowerthanthatofanyothersymbioticgiant,whereastheirwhitedwarfsarethemostmassive,withmasses,Mg∼1.1–1.4M⊙,sufficientforthemtobecomeIasupernovae.3.
Thehotcomponentanditsactivity
ThesymbiotichotcomponentshavebeenrecentlydiscussedbyMikolajewska(2003,2007).Accordingtotheiractivityallsymbioticstarscanbesplitintotwosubclasses:ordinaryorclassicalsymbioticstarsandsymbioticnovae.
Thevastmajorityofthesymbioticsystemsbelongstothefirsttype,includ-ingbothnon-eruptivesystemslikeRWHyaandSYMus,andsystemswithZAnd-typeactivity.Theirquiescenthotcomponentsappeartoberelativelyhot
5(>∼10K)andluminous(∼1000L⊙)whitedwarfspoweredbymoreorlesssta-blethermonuclear(TNR)burningoftheaccretedhydrogen.ZAndandmanyotherclassicalsymbioticstarsshowoccasional1–3magoptical/UVeruptionsontimescalesfrommonthstoafewyears,whenthehotcomponentmaintainsaroughlyconstantluminosity,whereasitseffectivetemperaturevariesfrom∼105to∼104K.ThisactivitycanbebestexplainedbythepresenceofanunstableaccretiondiscaroundtheTNR-shellburningwhitedwarf(Mikolajewska2003;Sokoloskietal.2006).Theseclassicalsymbioticwhitedwarfsclusteraroundthemass-luminosityrelationsforstarsleavingtheAGBwithaCOcoreandthoseleavingtheRGBwithadegenerateHecoreforthefirsttime(seeFig.5ofMikolajewska2003)whichsuggeststhattheycouldstillbehotattheonsetofmasstransferfromtheredgiantandsymbioticactivity.
Thesymbioticnovaearethermonuclearnovaeinasymbioticbinarysystem.Thereareeightknownsymbioticnovae,occuringinbothS-type(AGPeg,RTSer,V1329CygandPUVul)andD-typesystems(RRTel,V1016Cyg,HMSgeandRXPup).Theiroutburstsdevelopveryslowly:therisetomaximumtakesmonthstoyears,andthedeclinetothepre-outburststagecanlastdecades(seeFig.6ofMikolajewska2003).Therecord-holderamongthemisAGPeg:itshotcomponentmaintainedaconstantluminosity,∼3000L⊙foratleast100years(Kenyonetal.1993).TheevolutionofRXPupwasmuchfaster:theconstant-luminosity(plateau)phaselastedforonly11years,andthemaximum
4
plateauluminosity,∼15000L⊙,wasabout5timeshigherthanthatofAGPeg(Mikolajewskaetal.1999).Thesedifferencesinoutburstevolutionreflectdifferentwhitedwarfmasses:higherinRXPupthanthatinAGPeg.RXPupisalsoapossiblerecurrentnova(Mikolajewskaetal.1999).TheSyRNearecloselyrelatedtothesesymbioticnovae.ThemaindifferencebetweenthetwogroupsisthepresenceoftheverymassivewhitedwarfsintheSyRNewhichaccountsforbothrecurrenceandveryshorttimescalesoftheirnovaoutbursts.
BetweentheTNRnovaoutbursts,thehotcomponentsoftheSyRNe(in-cludingRXPup)showintrinsicvariabilityresemblingthehighandlowstagesoftheaccretion-poweredsystemsofCHCygandV694Mon(MWC560)aswellassomeoftheclassical(ZAnd)symbioticactivity,inparticular,theactivityofallthesesystemsischaracterizedbyverysimilartimescales(Anupama&Mikoa-jewska1999;Mikolajewska2003,andref.therein;Gromadzki,Mikolajewska&Lachowicz2008).BothintheSyRNeandCHCygavariableB/A/F-typeshellsourcewithLUV/opt∼10–500L⊙appearsduringthebright(high)state.HiBalmerandHeiemissionlinesarealsopresentbutHeiiandotherhigh-ionizationlinesarerarelyobserved.TheemissionlinefluxesrequirearatherhotsourcewithT>∼50000KandtheEUVluminosity,LEUV∼LUV/opt.Simi-lar,double-temperaturestructureisfoundinthemoreluminous,activeclassicalsymbioticstars.InAXPer,ARPav,FNSgr,andpossiblyothersystemstheshellabsorptionlinestracetheorbitofthehotcomponentandaremostlikelyformedinageometricallyandopticallythickaccretiondiscandgasstream(Quirogaetal.2002).InRSOphandTCrB,thehotcomponentbrighteningisassociatedwiththeappearanceofrapidphotometricvariability–flickering,sim-ilartothatobservedincataclysmicvariables(Anupama&Mikolajewska1999;Gromadzki,Mikolajewska&Lachowicz2008).ThesamecorrelationbetweenflickeringandactivitywasfoundinCHCygandV694Mon,andevenintheclassicalsymbioticsystemZAndduringitslastseriesoferuptions(Sokoloski&Bildstein1999).AlltheseapparentsimilaritiessuggestthatboththemultipleoutburstactivityofZAnd-typesymbioticstarsandthehighandlowstatesoftheSyRNeareduetounstabledisc-accretionontothewhitedwarf,withtheonlydifferencethatthewhitedwarfsintheformerburnstheaccretedhydrogenmoreorlessstablybuttheydonotinthelatter.4.
Thecoolgiant
Thespectraltypesofthesymbioticgiantsarenowrelativelywellestimatedbasedonred/nearinfraredobservations.Thecomparisonbetweensymbioticandsingleredgiantsinthesolarneighborhoodrevealsastrongbiastowardslaterspectraltypesintheformer–thespectraltypedistributionpeaksatM5forS-types,andatM6/M7forsymbioticMiras,andthatthefrequencyofMiravariablesishigheramongsymbioticgiants(Muerset&Schmid1999).ThesymbioticMirashavealsosystematicallylongerpulsationperiodsthansinglegalacticMiras,andtheyaresurroundedbyopticallythickdustshells(Whitelock2003).Thispredominanceofverylate,andthusmoreevolvedgiantsinsymbioticbinariessuggeststhatlargeradiusandhighmasslossisessentialfortriggeringsymbioticbehaviourinbinaries.Indeedsymbioticgiantstendtohavehighermasslossrates–∼10−7and∼10−6–10−5M⊙yr−1inS-andD-types,respectively–
5
ascomparedtoaverageredgiantsandMiras(e.g.Mikolajewska2003,andreferencestherein).ThecoolcomponentsoftheSyRNefollowatleastsomeofthesetrends.Theirspectraltypes–M2inRSOph,M4inTCrB,andM5–6inV30SgrandV745Sco(Anupama&Mikolajewska1999),fallintotherangecoveredbytheS-typesystemswhereastheshortreccurencetimefortheirnovaeruptionsrequiresahighaccretionrate,∼10−7M⊙yr−1andconsequentlyahighmasslossratefromthegiant.
Althoughthesymbioticgiantsarepersistentlyclassifiedasnormallumi-nosityclassIIIgiants,theirhighmasslossratessuggestthattheymightbemoreevolvedthanaveragefieldgiantswithsimilarspectraltypes.Recently,Gromadzkietal.(2007)haveshownthatmostS-typesymbioticscontainlow-amplitudeSRbvariablesinsteadofnormal(nonvariable)giantswhichcanac-countfortheirhighmasslossrates.
Unfortunately,thereisonlyonesymbioticgiant,CHCygwithadirectlymeasuredradius.TheIOTAinterferometricobservationsgaveRg=300R⊙in1996(Dycketal.1998),and250R⊙(Weigeltetal.;Yudin2002,privatecommunication)in2001,respectively.Thisisafactorof2morethananaverageradiusforanM6/M7IIIstar.Onemustnote,however,thatthemeasuredradiiforcoolgiantsshowlargescatter,andthemeanstandarddeviationsfortheresultingaverageradiiare50%(vanBelleetal.1999).
Recently,Zamanovetal.(2007)havemeasuredtheprojectedrotationalve-locities,vrotsini,forthegiantsin29S-typesymbioticsanddemonstratedthatthesegiantsaresynchronisedwiththeorbitalmotion.Theirresultisconsistentwiththeoreticalstudiesoftidalsynchronizationwhichpredictthesynchroniza-tiontimescalesof∼103–104yrfortypicalparametersofS-typesymbiotics(e.g.Zamanovetal.2007,andreferencestherein).Atpresent,thereare48symbi-oticgiantswithpublishedprojectedrotationalvelocities(Kenyonetal.1991;Mikolajewska&Kenyon1992;Fekeletal.2003;Hinkleetal.2006;Zamanovetal.2007),and31ofthemalsohaveknownorbitalperiods(Mikolajewska2003;Gromadzkietal.2007,inpreparation).So,assumingco-rotationwiththeorbitalperiodforallgiantsinS-typesymbiotics,theirradiicanbeinprin-cipleestimatedfromvrotsini.Fig.2acomparestheseradiiwiththeaverageradiicorrespondingtothegiantspectraltypes.Mostofsystemswithknownorbitalperiodsareeclipsingbinaries,andsohavesini≥0.94,andinanycaseareunlikelytohavesini≤0.75(seediscussioninMikolajewska2007).Thuswehaveassumedsini=1.InthecaseofBXMonandCD-43◦14304–systemswithsignificantlyeccentricorbits,wehaveadoptedthepseudo-synchronizationperiods(Hut1981)insteadoftheorbitalones.
Generallytheradiiderivedfromvrotsiniagreewiththosepredictedbyspec-traltype.However,insomesystemstheyaresignificantlylarger,althoughcon-sistentwiththetidal(Roche-lobe)radii.Theopticalmeasurementsofvrotsinigivesystematicallylargervaluesthanthenear-IR,andtherearelargedifferencesinsomesystemswithmorethanonemeasurement.
The’rotational’radiiofthecoolcomponentsofbothSyRNedeviatesignif-icantlyfromthevaluespredictedbytheirspectraltypes.InthecaseofRSOph,eitherthegiantrotatesfasterthantheorbitalperiod(Zamanovetal.2007)oritisfillingitstidallobe.InTCrB,thegiantindeedfillsitstidallobe,anditsradiusresultingfromthelightcurvesynthesisisafactorof∼2largerthanthe
6
Figure2.(a)Comparisonoftheredgiantradiiderivedfromvrotsini(as-sumingsini=1)withtheaverageradiipredictedfromtheirspectraltypes.Openandfilledcirclesrepresentthevaluesderivedfromtheopticalandnear-IRdata,respectively.Thesolid,dashedanddottedlinescorrespondtoR(vrotsini)=R(Sp)fori=90,60and45◦,respectively.InthecaseofTCrB,wehaveadoptedtheradiusderivedfromlightcurveanalysis(Bel-czy´nski&Mikolajewska1998)insteadofthatpredictedbythespectraltype.(b)SymbioticgiantsintheHRdiagram.OpenandfilledcirclescorrespondtotheGalacticyellowandremaingsystems,respectively.TheMCsystemsareplottedasopen(SMC)andfilled(LMC)stars.TheSyRNeareplottedasopendiamonds.TheupperandlowerpositionofRSOphcorrespondstotheRoche-lobefillinggiants,andtotheredgiantatd=1.4kpc,respectively(seetext).Evolutionarytracksforlow-massAGBstars(dashedanddottedlinesforZ=0.002andZ=0.02,respectively)andRGBstars(solidlines)arealsoplotted.
’rotational’radius.Asimilareffectisobservedinafewothersymbioticswithtidallydistortedgiants–seebelow(Sec.5).
Theredgiantradiicombinedwiththeeffectivetemperaturesfromthespec-traltypehavebeenusedtocalculatetheluminosity,andtoplotthesymbi-oticgiantsinanHRdiagram(Fig.2b).InthecaseoftheMC’ssymbioticsthedistancesareknown,andtheirluminositieshavebeenestimatedfromKmagnitudes.BoththegalacticandtheMCsymbioticgiantsarelow-mass,Mg<∼2−3M⊙,objects,eitherontheAGB–intheMCsystemsandyellowGalacticsystemswithPorb>∼900d,oratthetopofRGBorthebottomoftheAGBintheremainingsystems(seealsodiscussioninMikolajewska2007).ThepositionofthecoolcomponentTCrBintheHRdiagramhasbeenestimatedassumingaRochelobefillinggiant,anditisconsistentofalowmass,<∼1M⊙,solarmetallicitygiant.InthecaseofRSOph,theupperpositioncorrespondstotheRochelobefillinggiant(whichisconsistentwithitsrotationalveloc-ity)whereastheloweroneisconsistentwiththecommonlyaccepteddistance,d∼1.4kpc(Richetal.2008).Inbothcases,thelocationofRSOphintheHRdiagramisconsistentwithalowmass,<∼1M⊙,giantonlyifitsmetallicityissignificantlysubsolar.
7
Metalpoorgiantswith[Fe/H]<∼−1arepresentintheyellowsymbioticsystems(e.g.Mikolajewska2007,andreferencestherein),andtheyallbelongtotheGalactichalopopulation.So,isRSOphanotheryellowsymbioticstar?Scottetal.(1994)foundthatnear-IRspectraofRSOphindicateverylow[C/H]
1213<∼−3andC/C=10,andthesevaluesareverysimilartothoseestimatedfor
metal-poor([Fe/H]∼−2)fieldhalogiants(e.g.Keller,Pilachowski&Sneden2001).However,recentstudiesoftheopticalspectraofTCrBandRSOphhavegivenanearlysolarmetallicity(Wallerstein,Harrison&Munari2006).TheonlychemicalanomalydetectedinthesetwoSyRNeisthelithiumoverabundance(Shabhazetal.1999;Wallersteinetal.2006).SuchhighLiabundancesarecommoninlate-typesecondariesinneutronstarandbackholebinaries(e.g.Martinetal.1994)butextremelyrareinthesymbioticgiants.Infact,theLienhancementisdetectedonlyinthesymbioticMiraV407Cyg,whereitcanprobablybeexplainedasaconsequenceofhotbottomburning,whichoccursinstarswithinitialmassesintherange4–6M⊙(Tatarnikovaetal.2003).Theverylongpulsationperiod,P=745days,supportsthisinterpretationinthecaseofV407CygassimilarLienhancementshavebeenfoundinLMCmiraswithverylongperiods(>∼400days),andinonegalacticmirawithcomparableperiod.Asimilarexplanationis,however,unlikelyinthecaseofthelowmass,<∼1M⊙,nonpulsatinggiantsintheSyRNe.ThefactthattheLienhancementisacommonfeatureofthesecondariesinbothlow-massX-raybinaries(LMXRB),andtheSyRNe,indicatesthattheremustbeaprocessofLiproductionoperatinginsuchbinarysystems,andindependentlyoftheverydifferentnatureoftheircompactcompanions(ablackholeofaneutronstarinLMXRB,andamassivewhitedwarfintheSyRNe).5.
Masstransfermodeandaccretion
Amongthemostfundamentalquestionsposedbythesymbioticbinariesisthemodeofmasstransfer–Roche-lobeoverfloworstellarwind,andthepossibilityofaccretiondiscformation.
3-Dhydrodynamicalmodelshaveshownthatintypicalsymbioticbinariesthecoolgiantwindissignificantlydeflectedtowardstheorbitalplanebythegravitationalpullofitscompanion(e.g.Mastrodemos&Morris1998,1999;Gawryszczak,Mikolajewska&R´oz˙yczka2002,2003)whichwouldalsofacilitatetheformationofanaccretiondiscaroundthecompanion.Suchapictureissupportedbyobservations.Inparticular,resolvednebulaeinD-typesymbioticsshowabipolargeometrywhichisbestaccountedbyintrinsicasphericityofthewindand/oreffectsassociatedwiththepresenceofanaccretiondiscaroundthehotcomponent.Thereisalsostrongspectroscopicevidenceforfast,>∼
−11000kms,jetsandbipolaroutflowsinactiveS-typesymbiotics(e.g.Tomov
2003)includingZAnd(Burmeister2008)mostlikelyproducedinanaccretiondiscenvironment.So,atleasttransientaccretiondiscsseemtobecommonlyformedinthesebinaries.
However,tillrecently,mostresearchershavefavoredwindaccretionovertheRoche-lobeoverlow.WhereasthisstandpointisoutofquestioninthecaseofD-typesystems,thesituationinS-typesystems,especiallythosewithshorter,
d<∼1000,orbitalperiods,islessobvious.Infact,themainargumentsagainstthe
8
Roche-lobeoverflowhavebeentheredgiantradiiderivedfromtheirprojectedrotationalvelocities,andthelackofevidenceforellipsoidalvariabilityintheirlightcurves.ThelatterargumentisnottrueanymoreasthereisclearevidenceforellipsoidallightcurvevariabilityinmanyS-typesystemswhichwouldsuggestthatthemass-losinggiantisfillingitsRochelobeorisatleastveryclosetofillingitsRochelobe.Inparticular,tidallydistortedgiantdonorshavebeendetectedinallsymbioticswithmultipleoutburstZAnd-typeactivitywheneverrelevantredornear-IRlightcurveshavebeenavailable(Mikolajewska2007).Moreover,inmostofthesymbioticswithellipsoidalvariabilitythereissignificantdiscrepancybetweentheredgiantradiiderivedfromvrotsiniandthoseindicatedbythelightcurveanalysis(seeFig.4ofMikolajewska2007,anddiscussiontherein).Althoughthereisnotyetagoodsolutiontothisproblem,oneshouldrememberthatthevrotsiniestimatesforthesetidallydistortedsymbioticgiantsarebiasedbecausetheusuallyadoptedmodelassumesashericalshapeofthegiantandasimplelimb-darkeninglaw(Orosz&Hauschildt2000).
Theellipsoidalvariationsaredefinitelypresentinthequiescentopticalandnear-IRlightcuvesofTCrB,andthelightcurveanalysishaveconfirmedthatthecoolcomponentfillsitstidallobe(Belczynski&Mikolajewska1998).InthecaseofRSOph,thesituationismorecomplicated.Whilethecoolgiantra-diusinferredfromthevrotsinimeasurementindicatesthatitmayfillitsRochelobe,thequiescentvisuallightcuvesshowverycomplexorbitalbehaviour(Gro-madzki,Mikolajewska&Lachowicz,2008).Inparticular,thereisalwayspresentaminimumatthetimeofthespectroscopicconjunctionwiththeredgiantinfront,andthedepthcorrelatedwiththesystemaveragebrightness.ThereisalsoamovingbumpsimilartothosefoundinotheractivesymbioticsystemsbutnoevidenceforasecondaryminimumexpectedinthecaseoftheRoche-lobefillinggiant.Oneshouldnote,however,thatthemovingbumpcanveryeasilyveilthesecondaryminimumasitdoesforinstanceinARPavinwhichtheellipsoidalchangesareveryevidentinthenear-IRbands,whereasthevisuallightcurveshowsonlyverydeepprimaryminimumandthebump(Rutkowski,Mikolajewska&Whitelock2007).Althoughitispossiblethatthecoolcompo-nentofRSOphdoesnotfillitRochelobe,itishardtounderstandwhytheevolutionarystatusandthemasstransfermodeofRSOphdiffersomuchfromthoseinTCrB,especiallygiventhatRSOphismoreactiveanditshotcom-ponentbrigher,andithasamuchshorterrecurrencetimebetweentheTNReruptionsthanTCrB.Thisrequiresahighermasstransfer/accretionrateinRSOphthanthatinTCrB,whichiseasiertoensurebytheRoche-lobeoverflow.6.
Concludingremarks
Themainpointsofthispaperaresummarizedbelow.
•Therecurrentnovaewithredgiantsecondariesaredefinitelysymbioticstarsastheysharemanyphysicalcharacteristicswiththesesystems.•TheorbitalperiodsoftheSyRNe,RSOphandTCrBfallintotheshorterperiodtailofgalacticS-typesystems.ThesetwoSyRNe,andV2116Oph/GX1+4aretheonlysymbioticswiththecoolgiantbeingthelessmassivecomponent,withmass<∼1M⊙inallcases.Thewhitedwarfsin
9
theSyRNearethemostmassive,withM∼1.1−1.4M⊙,sufficientforthemtobecomesupernovaeIa.
•Roche-lobeoverflowseemstobequitecommoninS-typesymbioticstars,especiallyinthosewithmultipleoutburstZAnd-typeactivity,andthetidallydistortedredgiantandRoche-lobeoverflowisalsopresentinTCrBandpossiblyinRSOph.•BoththeactivityofZAnd-typesymbioticsaswellasthehighandlowstatesobservedintheSyRNebetweentheirTNRnovaeruptionsareduetounstabledisc-accretionontowhitedwarf.HoweverthewhitedwarfsinZAnd-typesystemsburntheaccretedhydrogenmoreorlessstablywhereasintheSyRNetheydonot.Acknowledgments.01727.
References
Anupama,G.C.&Mikolajewska,J.1999,A&A,344,177Brandi,E.,Quiroga,C.,Ferrer,O.E.,Mikolajewska,J.,Garc´ıa,L.G.2008,thisvolumeBelczynski,K.,&Mikolajewska,J.1998,MNRAS,296,77Burmeister,M.2008,thisvolumeCorradi,R.L.M.,Mikolajewska,J.,&Mahoney,T.,eds,2003,ASPConf.Ser.vol.303,
SymbioticStarsProbingStellarEvolution
Dyck,H.M.,vanBelle,G.T.,&Thompson,R.R.1998,AJ,116,981
Fekel,F.C.,Hinkle,K.H.,&Joyce,R.R.2003,inASPConf.Ser.,303,SymbioticStars
ProbingStellarEvolution,eds.R.L.M.Corradi,J.Mikolajewska,T.J.Mahoney,113
Gawryszczak,A.,Mikolajewska,J.,&R´oz˙yczka,M.2002,A&A,385,205Gawryszczak,A.,Mikolajewska,J.,&R´oz˙yczka,M.2003,A&A,398,159Gromadzki,M.,Mikolajewska,J.,&Lachowicz,P.2007,thisvolumeGromadzki,M.,Mikolajewska,J.,Borawska,&M.,Lednicka,A.2007,BalticAstr.,16,
37
Hinkle,K.H.,Fekel,F.C.,Joyce,R.R.,Wood,P.R.,Smith,V.V.,&Lebzelter,T.2006,
ApJ,1,479
Hut,P.1981,A&A,99,126
Keller,L.D.,Pilachowski,C.A.,&Sneden,C.2001,AJ,122,25Kenyon,S.J.,OLiversen,N.A.,Mikolajewska,J.,Mikolajewski,M.,Stencel,R.E.,
Garcia,M.R.,&Anderson,C.M.1991,AJ,101,637Kenyon,S.J.,Mikolajewska,J.,Mikolajewski,M.,Polidan,R.S.,&Slovak,M.H.1993,
AJ,106,1573
KolbK.,MillerJ.,SionE.M.,&MikolajewskaJ.2004,AJ,128,1790Martin,E.L.,Rebolo,R.,Casares,J.,&Charles,P.A.1994,ApJ,435,791Mastrodemos,N.,&Morris,M.1998,ApJ,497,303Mastrodemos,N.,&Morris,M.1999,ApJ,523,357Mikolajewska,J.2003,inASPConf.Ser.,303,SymbioticStarsProbingStellarEvolu-tion,eds.R.L.M.Corradi,J.Mikolajewska,T.J.Mahoney,9Mikolajewska,J.2007,BalticAstr.,16,1Mikolajewska,J.,&Kenyon,S.J.1992,AJ103,579Mikolajewska,J.,Brandi,E.,Hack,W.,Whitelock,P.A.,Barba,R.,Garcia,L.,&
Marang,F.1999,MNRAS,305,190
Muerset,U.,&Nussbaumer,H.1994,A&A,282,586
ThisresearchwaspartlysupportedbyKBNgrant1P03D
10
Muerset,U.,&Schmid,H.M.1999,A&AS,137,473Orosz,J.,&Hauschildt,P.2000,A&A,3,2650Quiroga,C.,Mikolajewska,J.Brandi,E.,Ferrer,O.,&Garcia,L.2002,A&A,387,139Rich,R.K.,Mukai,K.,Sokoloski,J.L.,Danchi,W.C.,Hachisu,I.,Evans,N.,Gerz,R.,
&Mikolajewska,J.2008,thisvolume.Rutkowski,J.,Mikolajewska,J.,&Whitelock,P.A.2007,BalticAstr.,16,49Scott,A.D.,Rawlings,J.M.C.,Krautter,J.,Evans,A.1994,MNRAS,268,749Shabhaz,T.,Hauschildt,P.H.,Naylor,T.,&Ringwald,F.1999,MNRAS,306,675SionE.M.,MikolajewskaJ.,BambeckD.,&DummT.2002AJ,123,983Sokoloski,J.L.,Kenyon,S.J.,Espey,B.R.etal.,2006ApJ,636,1002Sokoloski,J.,&Bildstein,L.1999,ApJ,517,919
Tatarnikova,A.A.,Maresse,P.M.,Munari,U.,Tomov,T.,Whitelock,P.A.,&Yudin,
B.F.2003,MNRAS,344,1233
Tomov,T.2003,inASPConf.Ser.,303,SymbioticStarsProbingStellarEvolution,
eds.R.L.M.Corradi,J.Mikolajewska,T.J.Mahoney,376
vanBelle,G.T.,Lane,B.F.,Thompson,R.R.,Doden,A.F.,Colavita,M.M.,etal.1999,
AJ,117,521
Wallerstein,G.,Harrison,T.,Munari,U.2006,AAS,209,182.03
Whitelock,P.A.2003,inASPConf.Ser.,303,SymbioticStarsProbingStellarEvolution,
eds.R.L.M.Corradi,J.Mikolajewska,T.J.Mahoney,41
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- azee.cn 版权所有 赣ICP备2024042794号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务