目录
一、SD156CV-H6AU规格书 ———————1~14 1. 2. 3. 4. 二、图纸
零件及图纸清单 压缩机规格 一般规格书 性能曲线 ———————15~30
◎零件及图纸清单PARTS AND DRAWING LIST
SD156CV-H6AU ◆ 外形图 OUTLINE DWG. ◆ 接线图 WIRING DIAGRAM ◆ 电气部品 Electrical components 马达保护器 Motor protector 运转电容 Running capacitor ◆ 接线盒部品 Terminal parts accessories 接线端子示意图 Terminal part assy 接线盒盖 Terminal cover 螺杆护套 Sleeve 马达保护器弹簧 Motor Pro. Spring 密封垫 Packing 橡胶垫圈 Rubber washer 凸缘螺母 Flange nut ◆ 防振部品 Mounting accessories 安装脚示意图 Mount assy 橡胶避振脚 Rubber mount 使用 图号 备注 数量 Drawing code Remarks Q’ty SC01DA39 SC01D576 SC01DA26H01 or 4CYC00982C SC01D352H18 * 1 - - 尺寸简图 Dimensioned sketch BF750-KB or BE 25µF-400WV SC01DA46 SC01DA53 4CYC00995 SC01DA45 SC01DA54 SC01DA63 SC01D430 SC01DA55 SC01DA68 - 1 1 1 1 1 1 - 3 *.不提供,仅供参考。Out of supply,for reference.
SD156CV-****型压缩机规格书
THE SPECIFICATION FOR SD156CV-**** COMPRESSOR
◆ 一 般 规 格 书General specification ◆ 压 缩 机 Compressor data 形 式 Design 气 缸 数 Number of cylinder 排 气 量 Displacement cm3 ◆ 电 动 机 Motor data 形 式 Motor type 极 数 Pole number 额 定 转 速 Nominal revolution 绝 缘 等 级 Insulation class 绕 组 阻 抗 Motor resistance ◆ 制 冷 剂 Refrigerant ◆ 冷冻机油 Oil 种 类 Brand 封 入 量 Charge SHEC-YG105 SHEC-EG011 滚动活塞式旋转式 Rolling piston type rotary 1 电容分相 Permanent split capacitor 2 2830/2860 E Main主. Aux副. R-22(CHCLF2) DIAMOND MS-56 or NM56EP or equivalent amount 270 220-240 50 1 2650/2680 -5% 870/890 ±% 蒸发温度 Evaporating temp. 7.2℃ 冷凝温度 Condensing temp. 54.4℃ 吸气温度 Return gas temp. 35.0℃ 环境温度 Ambient temp. 35.0℃ 膨胀阀前温度 Liquid temp. 46.1℃ 电源 Power source 单相 240V 50Hz SHEC-XQ194 19 (240V) ≤ 176 ◆重 量(含油) Mass kg ◆电 源 Power source 额 定 电 压 Rated voltage 额 定 频 率 Rated frequency 相 数 Phase ◆性 能 Performance 制 冷 量 Refrigerating capacity 输 入 功 率 Motor input 电 流 Current 能效比 C O P 测 试 条 件 Conditions 性 能 曲 线 Performance curve ◆起 动 Starting performance 堵 转 电 流 A 最 低 起 动 电 压 Lowest starting voltage
SD型压缩机一般规格书
1.使用条件及使用限制
压缩机在使用时,请先核对应用产品的最终试验数据是否符和以下标准。 项目 1. 制冷剂 2. 蒸发温度范围 使用限制值 制冷剂必须使用R-22 (CHCLF2)。制冷剂的品质必须符合JIS K1519标准。 -10℃ ( 14ºF) ~15℃(59ºF)[~ ~7.05kg/cm2G)]当作为热泵使用时,在制热起动期内(2~3分钟)或制冷制热转换期间,蒸发温度的最低值可以降至 -20℃(-4ºF)。 28℃(82.4ºF)~65℃(149ºF)[~(~26.5kg/cm2G))短时间 (数分钟) 负荷最高以 (28kg/cm2G)为界限。 小于等于6。但对于具有转换性质的短期负载则不在此限。 不得超过120℃(248ºF),但对热泵机组和除湿机(终年使用)来说,排气温度限定在115℃以下。这里的排气温度是指距壳体表面120mm的绝热排气管表面所测定的温度。(此限制值是考虑到比如热交换器的风机停掉的情况下,机组的预期寿命而规定的。) 吸气过热度必须在0℃(32ºF)以上,必须在满足排气温度在规定值的范围内。 请在额定电压±10的范围内使用。但是,如果额定电压为208 ~ 230V,限制值必须在208V减去5%到230V加上10%的范围之间。运转电压必须为运转时供给压缩机端子的电压。 当高/低压力平衡在(10.3Kg/cm2G)时,起动电压为额定电压的80%以上。但是,当额定电压为208 ~ 230V时,起动电压必须在208V的85%以上。起动电压指由于起动电流使电压下降时的压缩机端子电压。 开停频率为1小时10次以内,停机时间是指从停机开始到高低压平衡并下一次平衡起动的时间。 最大充注量0.9kg(排气量≥10.4cm3)或0.55 kg (排气量≤9.1cm3) 设备制冷和/或制热循环开停频率设计值170,000次。 由冷凝器堵塞或冷却风扇的停转等情况而引起的异常压力限制值为(40kg/cm2G)。 当压缩机在频率范围为40Hz~70Hz而且在额定电压±10%的范围内工作时,配管在横向和长度方向的振幅不超过0.8mm。但是如果有其他方法来检查配管的共振就不必遵守以上条件了。 配管应保证在压缩机的运输及开/停时配管不发生破损的需要。 开/停时:mm2mm2) 以下 运转时: mm2 /mm2) 以下 配管和工作件(压缩机,风扇,抗振橡胶垫块,配管)之间的间隙至少保留13 mm。配管和非工作件之间的间隙至少保留10mm。
3. 冷凝温度范围 4. 压缩比 5. 排气温度 6. 吸气温度 7. 供给电压 (运转时) 8.起动电压 9. 开停循环 10.制冷剂充注量 11. 开停频率 12. 压力的异常升 高 13. 配管的振动 14. 配管的应力 15. 配管的间隙
YG105 (1/5)
16. 防止液体回流 1. 压缩机壳体底部的温度表示为“To” 2. 排气管距壳体120mm处的温度表示为“Tdis” 3. 此时的冷凝温度为“TC” To≥TC+20(℃) Tdis≥TC+20 (℃) *绝不允许有液体回流。 如果使用三相马达,在供电线路相位接错时有可能使压缩机逆向运转从而损坏了压缩机。请仔细设计系统和线路以保证三相的正确接线。 17. 防止逆向运转
2.系统设计的注意点
2-1.旋转式压缩机的基本结构
旋转式压缩机与往复式压缩机在下列方面有本质上的不同,设计系统时一定注意。 基本系统 压缩机壳体内压力 吸气系统 详细情况 往复式:低压 旋转式:高压 注意事项举例 导线材料(耐热导线) 往复式:从壳体内吸入气缸,储液器容积,结构和制冷剂充注量。 间接吸气。 旋转式:直接吸入气缸。 往复式:内部支撑或内部悬挂。 旋转式:内部固定。 外部支撑结构,配管的形状和应力,配管的间隙。 压缩机内部支撑结构 2-2.压缩机设计压力(内部高压)
压缩机内部压力设计值为 (28kg/cm2G),所以设备高压侧压力一定不 能大于 (28kg/cm2G)。
2-3.热交换器能力
(1)热交换器的能力和空气流量一定要符合运行标准的高低侧压力要求。
(2)与往复式相比,旋转式压缩机具有输入电流对蒸发温度影响不大的特点,因此最 好在设计时把蒸发温度定在高的一面。
(3)由于在低的冷凝温度下使用压缩机能有效地减小输入电流,从而减小了击穿电压, 增大了冷量。所以在设计系统时应尽量降低冷凝温度。
(4) 总之,如果想要设计一个高效的系统最好按照以上特性(2)和(3)来设计,并且为 了使压缩机输出功率低,将蒸发温度定在高的一边,冷凝温度定在低的一边。
2-4.制冷剂充注量
尽可能减少制冷剂充注量以防止损害摩擦部件,减少制冷剂充注量不仅能够增强 压缩的可靠性,而且能够改善压缩机起动和停机性能。
2-5.制冷量的确定
由于它的特性,当在50/60Hz电源频率下运转时,旋转式压缩机比传统的往复式压缩机具有更低的排
量。因此,不仅要考虑在60Hz时制冷剂充注量和压缩机的性能测试,而且要考虑在50Hz时制冷剂充注量和压缩机的性能测试。
YG105 (2/5)
2-6.配管
与往复式压缩机不同,旋转式压缩机的机芯部分和马达都是固定在压缩机的壳体上,因此压缩机的固
定件必须配有抗振橡胶垫块和弹簧来减小压缩机起动和停机时的振动。所以,在设计和选定连接压缩机的配管时要注意以下几点:
(a) 配管和压缩机及其他部件之间的间隙。 (b) 压缩机工作时配管的振动。
(c) 压缩机起动和停机时配管的应力。 (d) 产品运输时配管受到的应力。
在振动很强烈或接触压力上升时,有时最好把产品用橡胶垫块固定。参照第一部分的有关配管间隙,
配管振动和应力的第13,第14,和第15点,在设计中一定不能存在引起配管异常振动和损坏的隐患。 2-7. 电气部品
正确使用选配的电气部品。以下是旋转式压缩机使用的电气部件,每一个的具体规格在压缩机的个别
规格书中。 电气部品 马达过载保护器 (过载电流继电器) 注意事项 固定式: 正确接线并固定在压缩机顶部的接线盒内。 分离式: 正确接线并固定在设备内。{周围温度最高为60℃(140ºF)} 正确固定在压缩机顶部的接线盒内。(在马达保护器兼作热保护器用的类型中不用。) 热保护器 运转电容 使用规定的电容器和耐电压。 起动电容 在耐热温度下使用。 电压继电器 相位保护器 按规定的固定方向固定。 继电器倾斜度不超过5。 三相压缩机要防止逆相操作,因此这一元件要在正确线路中使用。
压缩机和马达过载保护器之间的的连接线,请使用耐热电线。 (例)四氟化乙烯,六氟化丙烯树脂电线
2-8.冷冻机油
为了获得高度的可靠性,使用为旋转式压缩机特制的冷冻机油。这种冷冻机油具有优秀的耐磨性和热
稳定性。其他类型的机油都严禁使用。
2-9.冷冻机油的用量
作为起动时等的过渡现象,压缩机的冷冻机油有向系统内大量排出的可能,因此冷 冻循环的配管设计要确保回油。当冷冻循环内装有辅助储液器时,由于容易残留油,必 须要考虑回油构造。另外必须注意开停循环时间较短的场合。当超过规定的用量和/或 发生液体回流时,必须使用尺寸适合的储液器和/或曲轴箱加热器。
2-10.运输时防止振动
设计时必须考虑到制冷装置运输时,振动和冲击造成固定件和连接件损坏的情况
YG105 (3/5)
3. 装置装配上的注意事项
在制冷装置上装配旋转式压缩机时,请注意下列项目 3-1. 橡胶塞的拔除
压缩机的橡胶塞必须从高压侧(排气管及工艺管)拔除。
因为压缩机的内部充有~ ~cm2G) 的干燥空气,从低压侧(吸气管) 拔除橡胶塞时,会有油吹出来。 3-2. 焊接方法
在压缩机与配管,配管与配管之间的焊接过程中,请注意绝对不能在冷媒回路中 混入焊剂、灰尘、异物、水分等。 3-3. 制冷剂充注方法
压缩机已加油,检查“加油”标记。
系统抽真空时,请从高压侧、低压侧同时进行。(不得不从一侧抽真空时,必须从高压侧抽足够的时
间,并确认达到规定的真空度。)冷媒充注时,必须从制冷装置的高压侧(冷凝器侧)注入。 3-4. 制冷剂充注后的装置运转
在制冷剂充注后15分钟内,至少运转1分钟,向压缩机各摩擦部分供给冷冻机油。 3-5. 压缩机的固定
压缩机的固定,用规定的避振脚,按规定的固定方法固定,倾斜请控制在5°以内,并按规定安装电
器品。 3-6. 起动方法
(1)正确接线然后起动压缩机。接线错误会造成压缩机马达烧毁等严重后果,所以请务必正确接 线,并严格检查。
(2)电源关闭到再起动的时间为高低压平衡的时间(大约3分钟),平衡起动。 3-7. 气体泄漏
减少旋转式压缩机工作异常率的最好方法是减小装置的气体泄漏,特别是,请注意旋转式压缩机的壳
体容量和充注的冷冻机油量都较小,因此在冷冻机油随气体泄漏后,其存油量就不够了,这将会引起润滑不足从而导致摩擦部件的异常磨损。如果可能的话,进行高压气密性试验,并检查配管的共振和噪声。 3-8. 水分
保持冷媒中的水分含量在100ppm以内。 (在 60℃(140ºF)) 3-9. 抽真空
真空度必须抽到133Pa(abs) 为止。 3-10. 异物
(1) 金属粉、纤维屑、焊剂等不能混入压缩机。
(2) 请在冷媒回路中设置过滤网(大约50目),防止毛细管等堵塞。 3-11.一般操作注意点
(1) 压缩机必须自生产日期起一年内装到制冷装置上。 (2) 压缩机橡皮塞拔掉后暴露在空气中不得超过30分钟。 (3) 不得用压缩机来抽真空。 (4) 不得将压缩机用作空压机。 (5) 不得在真空状态下通电。 (6) 不要在运输过程中将压缩机倾斜得很厉害、跌落或倾覆。 (7) 不要划伤表面油漆。 4. 压缩机质量 4-1绝缘
YG105 (4/5)
(1) 绝缘阻抗
端子与底脚(或壳体)及端子之间的绝缘阻抗必须大于10MΩ。 (2) 耐压
在频率为50或60Hz端子与壳体之间应能承受以下的电压
1000V、1分钟,或1200V、1秒钟 (额定电压100~120V) 1500V、1分钟,或1800V、1秒钟 (额定电压200~240V) 2000V、 1分钟,或2400V、1秒钟 (额定电压346~480V) 4-2气密性及强度试验
(1) 气密性试验压力: (28kg/cm2G) (2) 水压强度试验压力: (84kg/cm2G) 4-3干燥
压缩机内部作干燥处理,用Cold Trap法测得的压缩机内残留水份在120mg以下。 4-4清洁度
压缩机内部作清洁处理,不得有垃圾及有害物质。 4-5运输中的耐久性
在正常运输中压缩机具有防振、抗冲击的保护。 4-6 制冷量和功率
额定制冷量和输入功率由本公司根据GB 9098规定的测试方法,允许制冷量为额定制冷量 的95%以上,允许输入功率为额定输入功率的%以下。
YG105 (5/5)
THE GENERAL SPECIFICATIONS FOR SD SERIES ROTARY COMPRESSOR
If a compressor is not operated properly, not only will it be impossible to display its performance to the full, but it may lead to a shortened service life and even malfunctions and breakdowns. These operating instructions have been prepared so that the rotary compressor will be used properly and efficiently without malfunctions and breakdowns, and here lists the operation standards and handling precautions. It is recommended that you acquire a full understanding of the special properties of the compressor and that you operate it properly.
1. Operation standards and operational limits
When the compressor is being used, check with the final test data of the application product to see whether or not the following standards are being maintained. ITEM (1) Refrigerant used. OPERATIONAL LIMIT The R-22 (CHClF2) refrigerant must be used. The quality of the refrigerant used must comply with JIS standard K1519. -10℃( 14F ) to 15℃( 59F ) [ ~~7.05kg/cm2G )]. 。。(2) Evaporating temperature range. The lower limit of this temperature may drop to -20℃( -4F ) during the start of a heating operation (2~3min.) or during the transitional period between cooling/heating selection with the heatpump. 28℃F ) to 65℃( 149F ) [ ~~26.5 kg/cm2G )]. The maximum limit is (28kg/cm2G) for short-term loads such as overloads. This should be 6 or less. But this does mot apply to short-term loads of a transitional nature. Not exceed 120℃( 248F ), except for heat pump unit or dehumidifiers (which 。。。。(3) Condensing temperature range. (4) Compression ratio. (5) Discharge gas temperature. are operated throughout a year) of which limit is 115℃( 239F ) at discharge gas temperature. This temperature should be measured at the surface of the heat-insulated discharge pipe at 150mm distance from the shell surface.(This limit should be considered under the expected life unit, such as clodge heat exchangers, etc.) The suction gas’s overheat must be over 0℃(32F) and the gas must be used on condition that discharge gas temperature is satisfied. Not exceed 120℃(248F). The compressor must be operated on within the range of rated voltage ±10%. But if the model which voltage range at 208~230V,then the compressor must be operated on within the range at 208V-5%~+10%. The operating voltage shall be the terminal voltage of the compressor during operation. 。。。(6) Suction gas temperature. (7) Motor wiring temperature. (8) Supply voltage. (during operation)
SHEC-EG011 (1/6)
ITEM (9) Starting voltage. OPERATIONAL LIMIT A voltage of 80% or more of the rated voltage shall be supplied at start-up. But if the model which voltage range at 208~230V,then a voltage of 85% or more of the rated voltage shall be supplied at start-up. The starting voltage shall be the terminal voltage of the compressor when the voltage drops due to starting. The starting voltage is provided for start-up on the high/low pressure balanced (10.3kg/cm2G ). The ON/OFF cycle shall be a maximum of 10 times an hour. The OFF period (10) ON/OFF cycle. shall extend from start until the high/low pressure are balanced, and balanced start-up. The maximum amount shall be 0.9kg (displacement ≥10.4cm3 ) or (11) Amount of refrigerant charged. 0.55kg(displacement ≤9.1cm3 ) The equipment shall be designed with less than 170,000 cycles in the cooling (12) ON/OFF frequency. and / or heating types. (13) Abnormal rise in The abnormal pressure rise limit caused by locking of the condenser or cooling pressure. fan, etc. shall be ( 40kg/cm2G ). The piping must have such a shape and length that the pipe deviation does not exceed 0.8mm when the frequency ranges from 40Hz to 70Hz and the (14) Pipe vibration. compressor is operated within the range of voltage +10%. There is no need to adhere to the above conditions if other method can be used to check the pipe resonance. The piping must be designed so that no damage will result from transporting of the product and the ON/OFF of the compressor. (15) Pipe stress. At starting and stopping : mm2mm2) or less During operation : mm2mm2) or less A clearance of at least 13mm must be left between the piping and active parts (compressor, fan, anti-resonance rubber, piping, etc.). (16) Pipe clearance A clearance of at least 10mm must be left between the piping and inactive parts. 1. Temperature of the compressor shell-bottom = ”To” ; 2. Temperature of the discharge pipe at 120mm from shell-surface = “Tdis”; 3. Condensing temperature at that time = “Tc”; (17) Prevention against To ≥Tc + 20(℃) flood-back Tdis ≥Tc + 20(℃) ★Flood-back is never guaranteed. (18) Protecting reverse operation In case of three phase motor, there are possibility for compressors to rotate in reverse cycle and damage the compressor when the supplied phase is in wrong order. Carefully design the unit and wiring to keep the right order for three phase.
2. Precautions for system design
2-1. Basic structure of rotary compressor
The rotary compressor is fundamentally different from the reciprocating type in the following ways. Care must be taken in this respect when designing the system. BASIC ITEM Compressor vessel pressure Suction gas intake system
DETAILS Reciprocating : Low Pressure Rotary : High pressure EXAMPLE OF PRECAUTION Material of leads (heat-resistant wires.) Volume inside accumulator, and Reciprocating : Indirect intake into accumulator, amount of cylinder from inside of shell Refrigerant charged. SHEC-EG011 (2/6)
Compressor inside support structure
Reciprocating : Inside support or inside suspension. External support structure, shape and stress of piping, Pipe clearance. 2-2. Compressor’s design pressure (high pressure side)
The applicable value for the compressor’s design pressure is (28kg/cm2G) and so an equipment design must be selected where the high pressure side design pressure is not more than (28kg/cm2G) .
2-3. Heat exchanger capacity
(1) The capacity and air flow of the heat exchanger must be determined so that they are compatible with the high and low pressure side pressure of the operational standards.
(2) Compared with the reciprocating type, the rotary compressor is characterized by the fact that its input current does not affect the evaporation temperature much. It is therefore a god idea to design the equipment with the evaporation temperature on the high side.
(3) Since using the compressor with a reduced condensation temperature is effective in that the input current is reduced, the break-down voltage is reduced and the cooling capacity is increased, every effort should be made to reduce the condensation temperature in the equipment design.
(4) Therefore, when aiming for a equipment design with a high it is recommended that the most be made of above features (2) and (3), and the evaporation temperature be set on the high side while the condensation temperature be set on the low side for compressors with a small output.
2-4. Amount of refrigerant charged
Reduce the amount of refrigerant charged as possible in order to prevent the liquid refrigerant from damaging the sliding parts. Reducing the amount not only increases the reliability of the compressor but also engances the start-up and shut-down characteristics of the compressor.
2-5. Capacity setting
Because of its characteristics, the rotary compressor tends to have a lower capacity ratio than the conventional reciprocating type when operated on a 50 / 60 Hz power line frequency. As a result, consideration in the determination of the amount of refrigerant in the equipment and in the performance test should be given to the compressor’s performance not only on a 60Hz line frequency but also 50Hz frequency.
2-6. Piping
Unlike the reciprocating type of compressor, the rotary compressor has a construction where the compression sections and motor sections are fixed to the compressor container, and so the compressor’s mounting parts employ anti-vibration rubbers and springs to reduce the shock sustained at ON/OFF.
Therefore, the following points must be borne in mind when designing the pipes which are to be connected to the compressor and when determining those pipes.
(a) Clearance between piping and compressor, and other parts. (b) Piping vibration with compressor operation. (C) Pipe stress with compressor ON/OFF. (D) Pipe stress during product transportation.
It is sometimes a good idea to anchor the equipment with rubber packing when vibration may be violent and when contact may arise. Refer to point (14), (15), and (16) in section 1 when it comes to the piping clearance, piping vibration and stress since a design must be implemented where there is no chance of abnormal pipe vibration or damage.
SHEC-EG011 (3/6)
2-7. Electrical parts
Use the designated electrical parts properly. The following electrical parts are used in a rotary compressor and the specifications of each are given in the individual specification sheet of the compressor. ELECTRICL PART PRECAUTIONS Motor protector (Over current relay) Thermal protectors Running capacitor Voltage relays Phase protectors
Dome mount type: Connect the wires properly and mount inside the terminal box on the top of the compressor. Remote type: Connect the wires properly and mount inside the equipment [60℃(140°F)max. ambient temperature]. Mount properly inside the terminal box on the top of the compressor. (These are not used in types where the motor protector serves as the thermal protector.) Use capacitors with the required capacitance and withstanding voltage. Use capacitors under the heat-withstanding temperature. Mount these in the prescribed mounting direction. The relays must not tilt more than 5°. 3-phase power compressor are protected from reverse operation and so these units should be used in the proper circuit. Use heat-resistant cable for the leads which are connected to the compressor terminal, motor protectors (attached to compressor).
(Example) Ethylene tetrafluoride or polypropylene heaxafluoride resin cable. 2-8. Refrigeration oil
In order to maintain a high reliability , one specially developed refrigeration oil for rotary compressors is used. This oil has excellent load-withstanding and heat stability properties. No other type of oil must therefore be used. 2-9. Amount of refrigeration oil
It is important for the piping to be designed with sufficient consideration given to oil return during the refrigeration cycle since the refrigeration oil in the compressor is sometimes discharged in volume inside the equipment as a transitional phenomenon (due to the storing of the refrigerant ) during start-up, etc.
Oil is liable to collect when an auxiliary accumulator is attached within the refrigerating cycle, which necessitates an oil-return structure. Care is required with short ON/OFF cycles. In the event of exceeding the restricted amount and / or liquid flood back, it is mandatory that a properly sized accumulator and / or crankcase heater be used. 2-10. Immunity from vibration during transportation
Sufficient consideration in design must be given so that mounting parts and connected parts are not damaged as a result of vibration or shock sustained while transporting the fully assembled equipment.
SHEC-EG011 (4/6)
3. Precautions with equipment assembly.
The following points must be borne in mind when incorporating the rotary compressor into the application product.
3-1. Removal of rubber plugs
The rubber plugs must be removed from the high pressure side ( and process pipe ). Compressors are charged dry-air at the pressure of ~ ~1.0kg/cm2G). If the rubber plugs are removed from the lower pressure side (suction pipe),it is feared that oil in the compressor is gushed out.
3-2. Welding method
Take care not to allow flux, dirt, foreign matter or moisture to enter the refrigeration circuit while welding
between pipes or welding the pipes to the compressor.
3-3. Refrigerant charging method
The compressor is supplied with oil.
Create the vacuum from both the high and low pressure side. ( If it is possible to the create the vacuum from one side only, take sufficient time at the high pressure side and check that the prescribed vacuum gas has been created.) Always charge the refrigerant from the high pressure side ( condenser ) of the unit. 3-4. Equipment operation after refrigerant charge
Within 15 minutes after having charged the refrigerant, operate for at least 1 minute and supply refrigeration oil to the sliding parts of the compressor.
3-5. Parts securing
Secure the compressor properly with the prescribed method and using the prescribed anti-vibration rubber pieces. The secured compressor must lean less than 5°from the perpendicular. Mount the electrical parts properly as instructed in section.
3-6. Starting method
(1) Connect the proper circuits and then start up the compressor.
(2) Make the time span from power OFF to re-start the same as the time taken for the high and low pressure to be
balanced ( about 3min ), then balanced starting. 3-7. Gas Leaks
The best way to reduce the failure rate among rotary compressors on the market is to reduce the equipment gas leaks. In particular, it should be remembered that rotary compressors have a small volume inside the case and a small amount of charged refrigeration oil, when they are operated with gas leaking, the absolute amount of refrigeration oil will be insufficient and this will cause abnormal wear of the sliding parts due to insufficient lubrication.
When possible, carry out an air-tightness test with the high pressure increased and check for pipe resonance and buzzing noises.
3-8. Moisture
Keep the amount of balanced moisture inside the refrigeration circuit ( including compressor ) within 100ppm [at 60℃(140°F)].
Moisture level in the refrigeration system should be maintained as low as possible.
SHEC-EG011 (5/6)
3-9. Evacuation
A degree of vacuum about 133Pa[abs] is desirable.
3-10. Contaminants / foreign obstacles
(1) Carefully avoid the fluxes, contaminants ( such as metal or fiber scraps ) to mingle inside the compressors.
(2) Install a strainer ( with about 50 mesh ) within the refrigeration circuit and avoid the clogging of capillary tube,
etc.. 3-11. General handling precautions
(1) The compressor should be installed in the refrigeration system within 1 year from the manufactured date. (2) The compressor should not be left for more than 30 minutes unsealed. (3) Do not carry out compressor self-actuated vacuum condition. (4) Never operate the compressor as an air compressor. (5) Never supply electricity under the vacuum condition.
(6) Do not severely tilt the compressor, drop it or cause it to topple over while transporting. (7) Do not scratch the painted surfaces. 4. Quality of compressor
4-1. Insulation
(1) Insulation resistance
Insulation resistance should be more than 10M between each of the terminals and the ground ( or the shell ), and between each of the terminals with a megger. (2) Dielectric withstand
A 50 or 60Hz potential as indicated below should be applied between live parts and dead metal parts. 1000v for 1 minute, or 1200v for 1 second ( Nominal 100~120v )
1500v for 1 minute, or 1800v for 1 second ( Nominal 200~240v ) 2000v for 1 minute, or 2400v for 1 second ( Nominal 346~480v ) 4-2. Air-tightness and Strength Test
(1) Air-tightness test pressure : (28kg/cm2G) (2) Hydrostatic strength test pressure : (84kg/cm2G)
4-3. Dryness
The inside of compressor is dried up. The remaining quantity of moisture measured by MELCO procedure should be below 120mg.
4-4. Cleanness
The inside of compressor is cleaned, there should be no dust or any harmful matter. 4-5. Endurance in transportation
The compressors is proof against vibration and shock in normal transportation.
SHEC-EG011 (6/6)
因篇幅问题不能全部显示,请点此查看更多更全内容