Carbons
YuguoWang,CemalErcan,AnwarKhawajah,andRashidOthman
Research&DevelopmentCenter,SaudiArabiaOilCo.,Dhahran,31311,SaudiArabia
DOI10.1002/aic.12611
PublishedonlineApril27,2011inWileyOnlineLibrary(wileyonlinelibrary.com).
Theexperimentalandtheoreticalstudyofmethaneadsorptionongranularactivatedcarbonsispresented.Theadsorptiondataaremodeledbyvariousisothermequations.Tothequationisfoundtohavethebestfit.Theisostericheatdecreaseswithloadingandincreasesweaklywithtemperature,whichisanindicationofheterogeneityofthemethaneandgranularactivatedcarbonsystem.UsingoptimizedparametersfromTothequation,anovelprocedureisdevelopedtocalculatetheintegralheatofadsorption,whichisthetotalamountofisostericheatofadsorptionatagiventemperatureand
C2011AmericanInstituteofChemicalEngineerspressureduringtheadsorptionprocess.V
AIChEJ,58:782–788,2012
Keywords:methaneadsorption,Tothequation,activatedcarbon,isostericheat,
integralheatofadsorption
Introduction
Dependingonthesourceandgeographicallocationofpro-duction,naturalgascancontainupto95mol%methane(CH4),theremainingbeingcarbondioxide(CO2),nitrogen,andsmallamountsofhighermolecularweighthydrocarbons,suchasethane(C2H6),propane(C3H8),andbutane(C4H10).Itiswell-knownthatnaturalgasburnscleanerthangasoline,dieselandtheotherfuels.Becauseofthisenvironmentallyfriendlybehavior,itiscommonlyusedforheatinganditsusecontinuestogrow.Itisalsousedinsomevehiclesbystoringitascompressednaturalgas(CNG)atpressuresupto270atm.Incurrentpractice,naturalgasismainlystoredasCNGforvehicleuseorliquefiednaturalgas(LNG)forshipment.However,CNGrequiresexpensivevesselsandmultistagecompressionandLNGalsorequiresexpensivecryogenicprocess.AnattractivealternativetoCNGandLNGmightbeadsorbednaturalgas(ANG),wherethegasisstoredonporousmaterialpackedintoavesselatmuch
CorrespondenceconcerningthisarticleshouldbeaddressedtoC.Ercanatcemal.ercan@aramco.com.
C2011AmericanInstituteofChemicalEngineersV
lowerpressure.ANGusesmicroporousadsorbentsinsidea
vessel,whichoffershigherenergydensityandhighervol-umetovolume(v/v)storagecapacitycomparedwithCNGattypicalnaturalgaspipelineconditions,pressurelessthan50barsandtemperaturelessthan55C.1–9So,atthesecon-ditions,ANGhashighpotentialforexploitationnotonlyintransportationbutalsoinlarge-scaleapplicationsuchasANGstorageclosetonaturalgasconsumers.
InANGoperation,themostimportantistheselectionordevelopmentofamicroporousmaterialwithhigh-storagecapacityandstabilityundercyclicoperation.Potentialmicroporousmaterials,whichcanmeettheserequirements,includeactivatedcarbon,metal-organicframeworks(MOF),andotherorganicorinorganicsolids.10–20AlthoughMOFsandtheotherorganicsolidsdisplayattractivesorptionprop-ertieswithav/vadsorptioncapacityashighas230ofabso-lutemethaneadsorptionat290Kand35bar,whichalsoexceedstheDOEtargetof180v/v,methaneisstronglyentrappedinMOF’sstructuresandheatingupto100Cisnecessaryfordesorption.13Theotherfactors,whichmayalsoaffecttheapplicabilityofMOFsasnaturalgasadsorb-entincludetheirstabilityandabilitytotolerateimpuritiessuchasH2S,blackpowder,mercaptans,etc.,whichare
AIChEJournal
782March2012Vol.58,No.3
Figure1.Schematicdiagramoftheexperimentalsetup.
commoninindustrialapplications.Inorganicsolidslikezeo-liteshavelowerperformanceformethanestoragethanactivatedcarbons.Moreover,zeolitespresentmuchmorehydrophilicsurfacesthancarbonsandtendtoadsorbwaterpreferentially.Therefore,activatedcarboncurrentlyremainstheonlycommerciallyviableadsorbentfornaturalgasstor-ageintermsofadsorptioncapacityandstability.
Inthisarticle,bothexperimentalandtheoreticalinvestiga-tionswerecarriedouttodeterminethemethaneadsorptioncapacityofvariousgranularactivatedcarbonsundertempera-turerangeupto56C.Temperature-dependentSips,TothandUnilanisothermequationswereusedtofittheadsorptiondata.D-Aequationwasusedtooptimizeparametersforadsorptioncharacteristiccurve.Anovelprocedureisalsodevelopedtopredictthetotalamountofisostericheatofadsorptionprocess.
characteristicswereused.Thehigh-puritymethaneandultra-high-purityheliumwereusedwithoutfurtherpurification.
Characterizationofactivatedcarbons
MicromeriticsASAPsurfaceareaandporosityanalyzerwereusedforN2adsorption/desorptionat77K.Thephysi-calpropertiesmeasuredareinTable1.Here,thetotalporevolumefromnitrogenporosimeterisfortheporesthathaveadiameterrangeof0–20nm,andthemicroporesaredefinedastheporesthathavediametersrangeof0–2nm.Forthemercuryporosimeter,mesoporevolumeisforporeswithawidthrangeof2–50nm,andmacroporesareporeswithawidthrangeof50–10,000nm.
TheamountN2adsorbedvs.relativepressureat77KongranularactivatedcarbonsareshowninFigure2.TheshapesofthesefourisothermsareType-IIisotherm,whichindicatesthatthesegranularactivatedcarbonsareessentiallymicropo-rous.Aftertherelativepressureof0.8,theincreaseofadsorbedamountismostprobablyduetothepresenceofmesopores,wherethecondensationofN2occursasthepres-suregoesup.ItisalsonotedthattheisothermplateauisreachedatP/P0¼0.5.Theslopeoftheplateauisrelatedtothemultilayermechanismofadsorptionontheexternalsur-faceofthematerials.Itisalsoobviousthatthehighersur-faceagranularactivatedcarbonhas,thehighermasstomass(m/m)adsorptioncapacityithasfornitrogen.
Table1.PhysicalPropertiesoftheGranularActivated
CarbonSamples
SampleASTMmeshsize
AC18Â16
AC230Â70
AC32Â60
AC412Â400.542.0599990.5000.45620.640.3140.1370.176
Experimental
Experimentalsetupandprocedure
Inthisstudy,thevolumetricmethodwasusedtomeasurethemethaneadsorptionongranularactivatedcarbons.ThemajorcomponentsoftheexperimentalsetupareshowninFigure1.Avacuumpump,notshowninFigure1,isalsoconnectedtothesystemfordegassing.Theadsorberhasathermaljacketconnectedtoaheater/chillersothatthetem-peratureoftheadsorbercanbesettothedesiredtemperatureformeasurement.
Todeterminetheadsorptionisotherm,theadsorberwasfirstfilledupwith50gofgranularactivatedcarbonandwasdegassedatapressureof2.5Â10À4Torrat120Cfor4h.Then,theadsorberwascooleddowntoandmaintainedatdesiredtemperaturesof10,21,38or56C.Thereferencevesselhasavolumeoftwoliters,andtheadsorberhasavol-umeof120cm3.Thereferencevesselwasfirstchargedwithmethanetoacertainpressure,then,valve3wasopenedandthepressurebetweentwovesselswaslefttoequalize.Read-ingsofthetwopressureindicatorsweretakenafter20minofreachingequilibrium.
Materials
Fourtypesofcommercialgranularactivatedcarbons,la-beledasAC1,AC2,AC3andAC4,withdifferentphysical
AIChEJournal
March2012Vol.58,No.3
Bulkdensity(g/cm3)0.470.390.49
32.2992.3632.402Skeletaldensity(g/cm)
NitrogenPorosimetry(77K)
123515891426BETsurfacearea(m2/g)
TotalPoreVolume(cm3/g)0.6290.7470.599
0.6000.7060.560MicroporeVolume(cm3/g)˚BJHaverageporewidth(A)18.0018.7017.47MercuryPorosimetry
0.3880.4570.360Totalporevolume(cm3/g)
30.1820.2050.164MesoporeVolume(cm/g)
0.2050.2520.194MacroporeVolume(cm3/g)
PublishedonbehalfoftheAIChEDOI10.1002/aic783
Figure2.N2adsorptionisothermsat77Kongranular
activatedcarbons.
Determinationofadsorptionofmethane
Aftertheadsorberwasfilledwithgranularactivatedcar-bon,itwastappedgentlyuntilthelevelofthegranularacti-vatedcarbondidnotgodownanymore.Atthispoint,thegranularactivatedcarbonwaspackedtoitsbulkdensity.Thetotalvolumeoftheadsorbercell(Vabsorber)consistsofthefollowingvolumes:adsorbentskeletal(Vsk),micropore(Vmic),mesopore(Vmes)andmacropore(Vmac),andthespaceamongtheadsorbentparticles(Vinterp).Forprecisedeterminationofthetotalvolumeofmicropore,mesopore,macroporeoftheadsorbentandthespaceamongadsorbentparticles,heliumwasusedsinceitisessentiallyinertforadsorption.Todeterminetheadsorptionamount,pressureP1wasrecordedforthereferencecellwithavolumeofVref,andequilibriumpressureP2wasalsorecordedafterthegatevalve3wasopen.Then,thetotalvolumebecomes(VT¼VrefþVabsorber).Thenonskeletalvolumeisdefinedas
Vnsk¼VTÀVsk
(1)
granularactivatedcarbons.AllofthemhaveType-Iiso-therm,whichindicatesthatthematerialsaremicroporous.Basedonthemolesofmethaneadsorbedpergramofgranu-laractivatedcarboninFigure3b,thecapacityformethaneadsorptionforfourgranularactivatedcarbonsincreaseintheorderofAC4\\AC1\\AC3\\AC2.ThisorderisthesameastheorderofBETsurfaceareaofAC4(999m2/g)\\AC1(1235m2/g)\\AC3(1426m2/g)¼AC2(1589m2/g).ThisisconsistentwiththeorderoftheamountofN2adsorbedat77KonthesesamplesasinFigure2.Thehigher-surfaceareaagranularactivatedcarbonhasthemoremolesofadsorbateitadsorbs.Basedonthevolumeofmeth-aneadsorbedperbulkvolumeofgranularactivatedcarboninFigure3a,thecapacityformethaneadsorptionincreasesintheorderofAC4\\AC2\\AC1\\AC3.Thiscapacityformethaneadsorptionchangecanbeattributedtothefactthatbulkdensityinvolumetovolumecomparisonbecomesamoreimportantfactor.Thebulkdensityforthefourgranu-laractivatedcarbonsareAC1(0.47g/cm3),AC2(0.39g/cm3),AC3(0.49g/cm3)andAC4(0.54g/cm3).AlthoughAC2hasthelargestBETsurfacearea,ithasthelowestbulkdensity.Then,forthesamevolume,AC2willhavethelow-estmasspacked.AC3hasthesecondhighestBETsurfaceareaandbulkdensity,andAC4hasthehighestbulkdensity,butlowestBETsurfacearea.Therefore,itisreasonabletosaythatthesynergeticeffectbetweenBETsurfaceareaandbulkdensitymakesAC3havethehighestvolumetovolumeadsorptioncapacity.
Assumingthatthemethaneadsorptiononlytakesplaceinmicropores,methanemoleculesinsidethemesoporeandmacroporesbehavelikeingasstate.Gas-phasemethanevol-umeis,therefore(VnskÀVmic).Tocalculatetheamountofmethaneadsorbedpergramofgranularactivatedcarbon,nonidealbehaviorisconsideredandEq.2isused.Thisvolu-metricmeasurementofadsorptionissimilartothemethodsappliedbyGummarandTalu21andSalehietal22h
nadsorbed¼
P1VTZRTÀ
P2ÂðVnskÀVmicÞ
ZRTi
(2)
Mgac
whereZismethanecompressibilityfactor,Tistemperature,andRistheidealgasMgacisthemassofthegranularactivatedcarbonused.Zisdeterminedfromthewell-knownSoave-Redlich-Kwong(SRK)equationofstate.
ResultsandDiscussionExperimentalresults
Figure3aand3bshowtheplotsoftheamountofadsorbedmethanevs.pressureat21Cforthefourdifferent
784
DOI10.1002/aic
PublishedonbehalfoftheAIChE
March2012Vol.58,No.3
AIChEJournal
˚amongAC3hasthelowestaverageporewidthof17.47A
thefourgranularactivatedcarbonsascalculatedbyBarret-Joyner-Halenda(BJH)method(Table1).Theaveragepore
˚)\\AC1(18.00widthincreasesintheorderofAC3(17.47A
˚)\\AC2(18.70A˚)\\AC4(20.64A˚).EarliertheoreticalA
23–25studiesfoundthatformethaneadsorptiononslit-pore
˚toactivatedcarbon,theoptimumporewidthis11.2–11.4A
createthemaximumdensityfortheadsorbedphase.SincetheporewidthofAC3isclosetotheoptimumporewidth,ithasthehigheradsorptiondensity,whichcontributestoAC3’shighestvolumetovolumecapacityformethaneadsorption.
SinceAC3performsbetterthantheothersonvolumetovolumebasedcomparisonformethaneadsorption,intheremainingpartofthearticle,thedataforAC3willbeusedinthediscussionandmodeling.Figure4showsthetempera-tureeffectonmethaneadsorptiononAC3.Itisclearthatthehighertheadsorptiontemperature,theloweramountofmethaneadsorbed.Thisisduetothefactthatadsorptionisexothermic.AccordingtotheLeChatelier’sprinciple,theendothermicdesorptionwillbefavoredwhentemperatureincreases.Therefore,lessamountofmethaneisadsorbedathighertemperatures.
Tocalculatethestoredamountofmethaneinsidetheadsorbervessel,theamountofthemethanecompressedinsidethemesopores,macroporesandthespaceamonggran-ularactivatedcarbonparticlesisaddedtotheliquid-likeadsorbedphaseinsidemicropores.Figure5comparesthemethanestoredforANGandCNGatvariouspressuresat21C.Atabout50bars,theadsorberpackedwithAC3canadsorbandstore90and120timesthevolumeoftheadsorbercell,respectively.ThesameadsorberpackedwithAC3onlyrequiresapressureofabout10barstostorethesameamountofmethanebycompressionat50bars.So,theadvantageofadsorbedmethanestorageisobvious.
itdoesnotgiveproperHenrylawbehavioratlow-pres-sure,27anddoesnothaveafinitelimitwhenthepressureissufficientlyhigh.Itisgenerallyvalidinthenarrowrangeoftheadsorptiondata.AlthoughtheSipsequationaddressestheproblemofFreundlichequationofcontinuingincreaseoftheadsorbedamountwithanincreaseinpressure,itdoesnothaveaproperHenrylawbehavioratlow-pressure.How-ever,Tothisothermequationsatisfiesboththelow-andhigh-endrequirementanddescribesmanysystemswithsub-monolayercoverageverywell.Unilanisothermequation(uniformdistributionandLangmuirlocalisotherm)assumesthattheenergydistributionisuniformandlocalLangmuirisothermisapplied.
Here,methaneadsorptiononAC3wasmodeledwithtem-perature-dependentformofSips,TothandUnilanequations.TheequationsandtheiroptimizedparametersarelistedinTable2.Nonlinearleast-squaremethodisusedtofittheex-perimentaldataandin-housedevelopedMATLABprogramisusedtodrivetheMATLABoptimizationtoolboxsolverlsqcurvefit.TheaveragerelativeerrorforeachmethodisalsolistedinTable2.TheaveragerelativeerrorisdefinedinEq.4
PYiexpÀYimodeled
Yexpi
AveragerelativeerrorðAREÞ%¼
N
(4)
whereNisthenumberofexperimentaldatapoints,super-scriptsexpandmodeledstandfortheexperimentalandmodeledvalues,respectively,Yrepresentstheamountofmethaneadsorbed.
InTable2,then0,tandsintheSips,TothandUnilanequationscharacterizetheheterogeneityofthemethane-granularactivatedcarbonsystem;Cl,Cls,Cls0areadsorbedamount,saturationadsorbedamountandsaturationadsorp-tionamountatthereferencetemperature;b,b0,b,areadsorptionaffinityconstant,adsorptionaffinityconstantatreferencetemperatureandadsorptionaffinityconstantataverageadsorptionenergy,Risgasconstant,Pisadsorptionpressurex,a,Pareparameters,andQisheatofadsorption.QforSipsandTothequationsarequitedifferentfromeachother.ThisshouldnotcauseanyproblembecauseQintheSipsequationistheisostericheatofadsorptionata
EmpiricalModeling
Manysemiempiricalapproacheshavebeenproposedandtheyarequitesuccessfulindescribingequilibriumdata.26TheseisothermequationsincludeFreundlich,Sips,TothandUnilanequations.TheFreundlichisothermequationisnotvalidatthelow-andhigh-endofthepressurerangebecause
Table2.IsothermEquationsUsedtoModeltheExperimentalDataandtheirOptimizedParameters
EquationNameSips
EquationExpressionCl¼Cls
1nðbPÞ=
1=n1þðhbPÞÀÁiQT0b¼b0expRTÀ10
ÀTT0Á11
ÀTn¼n0þah1i
T
Cls¼Cls;0expz1ÀT0
OptimizedParametersusing294.15Kasreferencetemperature
Cls,0¼10.794mmole/g
v¼0
b0¼0.023753barÀ1Q¼10.516kJ/mole
n0¼1.6512a¼0.64163
Cls,0¼17.934mmole/g
v¼0
b0¼0.12929barÀ1Q¼20.259kJ/mole
t0¼0.42718a¼0.2573
Cls,0¼28.115mmole/g
v¼0
b0¼0.001025barÀ1¼15:803kJ=moleE
s¼6.1961
Emax¼30.956kJ/moleEmin¼0.6505kJ/mole
ARE(%)1.7563
Toth
bPCl¼Cls1s
bPÞt=
h½1þðÀÁiQT0
À1b¼b0expRTT0
ÀÁ0
t¼tDþah1ÀTTi
TCls¼Cls;0expv1ÀT0
1.3047
Unilan
sPþbe
Cl¼Clsln11þÀsPbehÀÁiT0Eb¼b0expÀRT01ÀT¼EmaxþEminE
s¼
Cls¼Cls;0expv1À
2EmaxÀEmin
2hRTT
T0
2.9886
i
fractionalloadingof0.5,whileQintheTothequationistheisostericheatofadsorptionatzerofractionalloading.Thevaluesofn0,tandsinTable2allindicatetheheterogeneityofthemethane-granularactivatedcarbonsystem.26Asindi-catedinTable2,Tothequationgivesthehighestaccuracyinfittingtheexperimentaladsorptiondata.Figure6showsthattheoptimizedtemperature-dependentTothequationfitsex-perimentaldatawellinallthepressurerangeatdifferenttemperatures.
equationisusedtocalculatetheisostericheatofadsorption.UsingClausius-Clapeyronequation(Eq.5),theequationforisostericheatofadsorptionisderivedfromtheTothequationasshowninEq.6
ÀDH¼RT2ð@lnP=@TÞh(5)8679
67=<7Â1bPtÃ65ÀDH¼QÀðaRTOÞlnðbPÞÀ1þðbPÞln4ÀÁ1=:;t1þðbPÞtt
#(\")
1hlnh¼QÀðaRTOÞlnÀt1=tð1ÀhtÞtð1þhÞ8239>>>>Cl<=ln67C1Clsl67¼QÀðaRT0Þln41=tÀt5>>t>>1ÀClCls:;CtlsÀCtl
(6)
Theisostericheatofadsorption(Eq.6)isafunctionof
loadingofadsorbatesorpressure.Now,themeaningofQinEq.6isclear;itistheisostericheatwhenthefractionalloadingiszero.Figure7showsthevariationoftheisostericheatofadsorptionforAC3withloadingatfourdifferenttemperatures.Thevalueofisostericheatofadsorptiondeter-minedbyEq.6forAC3isclosetothosereportedvaluesof20KJ/molintheliterature.30Thedecreaseoftheisostericheatwithloadingphysicallymeansthatmethanemoleculesprefertoadsorbontothesitesofhigh-energy.Then,asadsorptionprogressesmethanemoleculesadsorbontothesitesoflow-energy,whichresultsinaslowincreaseintheamountofadsorbedvs.pressure.ThisfindingisalsoinagreementwiththeslopeofadsorptionisothermasindicatedinFigure6.
March2012Vol.58,No.3
AIChEJournal
IsostericHeatofAdsorption
Theknowledgeoftheadsorptionequilibriumandisostericheatofadsorptionisessentialforproperdesignandopera-tionofanygas-phaseadsorptionprocess.Theisostericheatofadsorptionisusuallyestimatedfromthetemperaturede-pendenceoftheadsorptionisotherm.19,28,29AsdiscussedintheExperimentalresultssection,theoptimizedTothequationgivesthebestresultinfittingexperimentaldata.Here,this
Figure6.ModelingandexperimentaldataforAC3at
differenttemperatures.786
DOI10.1002/aic
PublishedonbehalfoftheAIChE
highertemperatureislessthanthatatlowertemperature.Thisisbecauseofthelessamountofmethaneadsorbedathighertemperature.
Conclusions
Thedetailedanalysisofhigh-pressuremethaneadsorptionandstorageresultsatthetemperatureandpressurerangeof10–56C,and0–50barshasallowedustodrawthefollow-ingconclusions.
PhysicalcharacteristicsofgranularactivatedcarbonsuchasBETsurfacearea,microporevolume,packingdensityandpore-sizedistributionallplayimportantroleindeterminingtheamountofmethaneadsorbed.
Isostericheatofadsorptionofmethaneongranularacti-vatedcarbonsincreaseswithtemperatureanddecreaseswithloading,whichindicatestheheterogeneityofthemethane-granularactivatedcarbonsystem.
Aprocedureisdevelopedtocalculatetheintegralheatofadsorptionintheadsorptionprocess.Theintegralheatofadsorptionincreaseswithdecreaseofadsorptiontemperature.Thehigheramountofadsorptioncanaccountforthiseventhoughaslightlowerisostericheatofadsorptionatloweradsorptiontemperature.Thisprocedurecanbeusedtopre-dicttheintegralheatofadsorptionreleasedintheisothermaladsorptionprocessanditisimportantinformationforthedesignandoperationofanindustrialadsorber.
IntegralHeatofAdsorption
Equation6canbenumericallyintegratedtogettheinte-gralheatofadsorption,31whichisthetotalamountofheatofadsorptionreleasedduringtheadsorptionprocess.There-fore,thefollowingprocedurecanbedevelopedtoestimatetheintegralheatofadsorption,whichneedstoberemovedfromanadsorberbedtocontrolthebedtemperatureconstantduringadsorptionprocess:
(a)Experimentalmeasurementofadsorptionisothermsatdifferenttemperatures.
(b)Useexperimentaldatatooptimizetheparametersofthetemperature-dependentTothequationparameters.
(c)UseTothequationtopredicttheamountofadsorptionatacertaintemperatureandpressure.
(d)Integrateisostericheatofadsorptioncurvetogettheintegralheatofadsorption—thetotalamountofisostericheatofadsorptionuptoacertainpressureatacertaintem-perature.
Usingtheaforementionedprocedureandassumingacon-stantbedtemperature,theintegralheatofadsorptionheatreleasediscalculatedforanadsorberpackedwith1kgofAC3atatemperaturerangeof10–60C,andapressurerangeof0–50bars.AlthoughFigure7showsthatisostericheatisslightlyhigherathigheradsorptiontemperature,Figure8showstheintegralheatofadsorptionreleasedat
LiteratureCited
1.CookTL,KomodromosC,QuinnDF,RaganS.Adsorbentstoragefornaturalgasvehicles.In:BurchellTD.CarbonMaterialsforAdvancedTechnologies.Oxford:ElsevierScience,Ltd;1999:269–302.
2.LuX-C,LiF-C,Ted,WA.AdsorptionmeasurementinDevonianshales.Fuel.1995;74:599–603.
3.ChangKJ,TaluO.Behaviorandperformanceofadsorptivenaturalgasstoragecylindersduringdischarge.ApplThermEng.1996;16:359–374.
4.InomataK,KanatawaK,UrabeY,HosonoH,ArakiT.Naturalgasstorageinactivatedcarbonpelletswithoutabinder.Carbon.2002;40:87–93.
5.WegrzynJ,GurevichM.Adsorbentstorageofnaturalgas.ApplEnergy.1996;55:71–83.
´S.Efficientdynamicchargeanddischargeofan6.GoetzV,Biloe
adsorbednaturalgasstoragesystem.ChemEngComm.2005;192:876–896.
7.MenonVC,KomarneniS,Porousadsorbentsforvehicularnaturalgasstorage:areview.JPorousMater.1998;5:43–58.
´S,GoetzV,MauranS.Dynamicdischargeandperformance8.Biloe
ofanewadsorbentfornaturalgasstorage.AIChEJ.2001;47:2819–2830.
9.BasumataryR,DuttaP,PrasadM,SrinivasanK.Thermalmodelingofactivatedcarbonbasedadsorptivenaturalgasstoragesystem.Carbon.2005;43:541–549.
10.CelzardA,FierroV.Preparingasuitablematerialdesignedfor
methanestorage:acomprehensivereport.EnergyFuels.2005;19:573–583.
11.PfeiferP,Ehrburger-DolleF,RiekerTP,GonzalezMT,Hoffman
WP,Molina-SabioM,Rodriguez-ReinosoF,SchumidtPW,VossDJ.Nearlyspace-fillingfractalnetworksofcarbonnanopores.PhysRevLett.2002;88:115502–1–115502–4.
12.ShaoX,WangW,ZhangX.Experimentalmeasurementsandcom-putersimulationofmethaneadsorptiononactivatedcarbonfibers.Carbon.2007;45:188–195.
13.SekiK.Designofanadsorbentwithanidealporestructurefor
methaneadsorptionusingmetalcomplexes.ChemCommun.2001;16:1496–1497.
Figure8.Integralheatofadsorptionformethane
adsorptionprocess.
14.EddaoudiM,KimJ,RosiN,VodakD,WachterJ,O’KeeffeM,
YaghiOM.Systematicdesignofporesizeandfunctionalityinisore-ticularmofsandtheirapplicationinmethanestorage.Science.2002;295:469–472.15.Du†renT,SarkisovL,YaghiOM,SnurrRQ.Designofnewmateri-alsformethanestorage.Langmuir.2004;20:2683–2689.
16.MaS,SunD,SimmonsJM,CollierCD,YuanD,ZhouH-C.Metal-Organicframeworkfromananthracenederivativecontainingnano-scopiccagesexhibitinghighmethaneuptake.JAmChemSoc.2008;130:1012–1016.
17.AtwoodJL,BarbourLJ,JergaA.StorageofmethaneandFreonby
interstitialvanderWaalsconfinement.Science.2003;296:2367–2369.
18.HarlickPJE,TezelFH.Adsorptionofcarbondioxide,methaneand
nitrogen:PureandbinarymixtureadsorptionbyZSM-5withSiO2/Al2O3ratioof30.SepSciTechnol.2002;37:33–60.
19.LiP,TezelFH.AdsorptionSeparationofN2,O2,CO2,andCH4Gasesbyb-Zeolite.MicroporousMesoporousMater.2007;98:94–101.
20.LiP,TezelFH.Pureandbinaryadsorptionequilibriaofcarbon
dioxideandnitrogenonsilicalite.JChemEngData.2008;53:2479–2487.
21.GummaS,TaluO.Gibbsdividingsurfaceandheliumadsorption.
Adsorption.2003;9:17–28.
22.SalehiE,TaghikhaniV,GhotbiC,LayEN,ShojaeiA.Theoretical
andexperimentalstudyontheadsorptionanddesorptionofmethane
23.24.25.
26.27.28.29.30.31.
bygranularactivatedcarbonat25C.JNaturalGasChem.2007;16:415–422.
TanZ,GubbinsKE.Adsorptionincarbonmicroporesatsupercriti-caltemperatures.JPhyChem.1990;94:6061–6069.
MatrangaKR,MyersAL,GlandtED.Storageofnaturalgasbyadsorptiononactivatedcarbon.ChemEngSci.1992;47:1569–1579.ChenXS,McEnaneyB,MaysTJ,Alcaniz-MongeJ,Cazorla-AmorosD,Linares-SolanoA.Theoreticalandexperimentalstudiesofmethaneadsorptiononmicroporouscarbons.Carbon.1997;35:1251–1258.
DoDD.AdsorptionAnalysis:EquilibriaandKinetics,SeriesinChemicalEngineering.London,UK:ImperialCollegePress;1998.TaluO,MyersAL.Rigorousthermodynamictreatmentofgasadsorption.AIChEJ.1988;34:1887–1893.
HacskayloJJ,LeVanDM.CorrelationofadsorptionequilibriumdatausingamodifiedAntoineequation:anewapproachforpore-fillingmodels.Langmuir.1985;1:97–100.
SundaramN,YangRT.Isostericheatsofadsorptionfromgasmix-tures.JColloidsInterfaceSci.1998;198:378–388.
EstevesIAAC,Lopes,MSS,NunesPMC,MotaJPB.Adsorptionofnaturalgasandbiogascomponentsonactivatedcarbon.SepPurifTechnol.2008;62:281–296.
MyersAL.Thermodynamicsofadsorptioninporousmaterials.AIChEJ.2002;48:145–160.
ManuscriptreceivedOct.24,2010,andrevisionreceivedFeb.21,2011.
788DOI10.1002/aicPublishedonbehalfoftheAIChEMarch2012Vol.58,No.3AIChEJournal
因篇幅问题不能全部显示,请点此查看更多更全内容